端氨基超支化聚合物HBP接枝壳聚糖微球的制备及Cu(II)吸附性能研究任务书
2020-06-14 16:15:42
1. 毕业设计(论文)的内容和要求
化工、轻工等行业排放大量含重金属离子的废水会严重危害人体健康。目前,吸附法是处理重金属离子废水的最有效的方法。常用的吸附材料存在吸附容量较低、吸附和解吸速度慢、、吸附材料吸附饱和后无法再生和重复使用等问题。超支化聚合物具有独特的准球形分子结构和丰富的端基,表现出高溶解度、低粘度、高反应活性等特殊性能。目前,超支化聚合物已成为高分子材料领域的新宠。壳聚糖( chitosan)在自然界中含量丰富,原料易得,具有良好的生物相容性、抗菌和生物降解性等,是一类极具发展前景的天然高分子材料。壳聚糖分子中存在大量的氢键作用,导致壳聚糖抗润胀、溶解性差,只能溶于稀酸和特殊的含卤素的有机溶剂中,极大地限制了壳聚糖的广泛应用。离子液体(Ionic Liquid)是一类极具应用前景的绿色溶剂,应用广泛。目前,有关天然高分子,如壳聚糖、纤维素、淀粉等在离子液体中的溶解性能及溶解机理的研究很热烈。利用离子液体作为壳聚糖衍生化的绿色溶剂已引起关注。
本课题利用离子液体作为壳聚糖衍生化的绿色溶剂,依托端氨基超支化聚合物中丰富的端氨基,基于壳聚糖分子结构中强反应性的氨基和羟基,采用二酸酐将超支化聚合物交联至壳聚糖结构中,制备具有特定结构的超支化接枝壳聚糖微球,探索离子液体介质中超支化接枝壳聚糖微球的反应机理及工艺条件,并将超支化接枝壳聚糖微球应用于Cu(II)的污染治理,确定其Cu(II)吸附性能,并研究超支化接枝壳聚糖吸附剂的Cu(II)吸附机理。2. 参考文献
1.Zhang, C., et al., Synthesis and characterization of water-soluble O-succinyl-chitosan. European Polymer Journal, 2003. 39(8): 1629-1634. 2.Liu, H., et al., Hyperbranched polyethylenimines as versatile precursors for the preparation of different type of unimolecular micelles. Reactive and Functional Polymers, 2007. 67(5): 383-395. 3.Qu, R., et al., Preparation and metal-binding behaviour of chitosan functionalized by ester- and amino-terminated hyperbranched polyamidoamine polymers. Carbohydr Res, 2008. 343(2): 267-273. 4.Ma, F., et al., Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. J Hazard Mater, 2009. 172(2-3): 792-801. 5.Klaykruayat, B., K. Siralertmukul, and K. Srikulkit, Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydrate Polymers, 2010. 80(1): 197-207. 6.Zhou, L., et al., Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination, 2010. 258(1-3): 41-47. 7.Chen, M., et al., Hyperbranched glycoconjugated polymer from natural small molecule kanamycin as a safe and efficient gene vector. Polymer Chemistry, 2011. 2(11): 2674. 8.Sarkar, K. and P.P. Kundu, Preparation of low molecular weight N-maleated chitosan-graft-PAMAM copolymer for enhanced DNA complexation. Int J Biol Macromol, 2012. 51(5): 859-67. 9.Liping Wu, Z.Z., Preparation of Polyamidoamine Dendrons Supported on Chitosan Microspheres and the Adsorption of Bilirubin. JAPS 2013 130 563-571 10.Liu, L., Homogeneous Acetylation of Chitosan in Ionic Liquids. JAPS 2013 129 28-35. 11.Rajiv Gandhi, M. and S. Meenakshi, Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies. Carbohydr Polym, 2013. 91(2): 631-637. 12.Wang, Z., et al., A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydr Polym, 2013. 94(1): 505-510. 13.Wei, Y., et al., Modification of chitosan with carboxyl-functionalized ionic liquid for anion adsorption. Int J Biol Macromol, 2013. 62: 365-369. 14.Eladlani, N., et al., Nanoparticles and whiskers-based chitosan films for Cr complexation. Environmental Chemistry Letters, 2014. 13(1): 105-110. 15.Chen, H., et al., Grafting chitosan with polyethylenimine in an ionic liquid for efficient gene delivery. PLoS One, 2015. 10(4): e0121817. 16.Wang, Z., et al., Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution. Carbohydr Polym, 2015. 117: 973-979. 17.El-Sherbiny, I.M., A. Hefnawy, and E. Salih, New core-shell hyperbranched chitosan-based nanoparticles as optical sensor for ammonia detection. Int J Biol Macromol, 2016. 86: 782-788. 18.Wang, J., et al., Recent progress on synthesis, property and application of modified chitosan: An overview. Int J Biol Macromol, 2016. 88: 333-344.
|
3. 毕业设计(论文)进程安排
起讫日期 |
设计(论文)各阶段工作内容 |
备 注 |
2016.11.21 |
确定论文题目 |
|
2016.11.21#8212;2017.1.15 |
查找资料、完成开题报告 |
|
2017.2.20#8212;2017.3.10 |
准备实验 |
|
2017.3.10#8212;2017.5.20 |
完成实验 |
|
2017.5.21#8212;2017.5.30 |
完善实验、完成初稿 |
|
2017.6.1#8212;2017.6.9 |
论文修改 |
|
2017.6.12#8212;2017.6.16 |
论文答辩 |
|