不同载体的Cu基催化剂催化糠醛加氢制2-甲基呋喃任务书
2020-06-26 19:54:43
1. 毕业设计(论文)的内容和要求
通过共沉淀法制备不同载体的负载型铜基催化剂,用于生物质原料糠醛加氢制高附加值产品2-甲基呋喃,通过多种表征手段探究影响反应性能的关键因素,为新型催化剂的开发提供理论依据。
论文要求:学生能够明确实验目的,对实验过程有整体规划与认识,在了解课题背景、完成文献阅读任务的基础上,整合催化剂制备方法、实验反应数据与催化剂表征结果,对整过实验过程给出自己合理的总结与推测。
2. 参考文献
[1] MARISCAL R, MAIRELES-TORRES P, OJEDA M, SADABA I, GRANADOS M L. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy Environmental Science, 2016, 9(4): 1144-1189. [2] VAN PUTTEN R, VAN DER WAAL J C, DE JONG E, RASRENDRA C B, HEERES H J, DE VRIES J G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J].Chemical Reviews, 2013,113(3): 1499-1597. [3] PACE V, HOYOS P, CASTOLDI L, DE JONG E, ALCANTARA A R. 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry[J]. Chemsuschem, 2012, 5(8): 1369-1379. [4] NAKAGAWA Y, TAKADA K,TAMURA M, TOMISHIGE K. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd-Ir alloy catalyst[J].Acs Catalysis, 2014, 4(8): 2718-2726. [5] YAN K, CHEN A C. Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst[J]. Fuel, 2014,115: 101-108. [6] YAN K, LIAO J Y, WU X, XIE X M. A noble-metal free Cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid[J]. Rsc Advances, 2013.,3(12): 3853-3856. [7] YAN K,CHEN A C. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy, 2013,58: 357-363. [8] LANGE J P, VAN DER HEIDE E, PRICE R, VAN BUIJTENEN J, PRICE R. Furfuralu a promising platform for lignocellulosic biofuels[J]. Chemsuschem, 2012, 5(1): 150-166. [9] ZHENG H Y, ZHU Y L, BAI Z Q, HUANG L, XIANG H W, LI Y W. An environmentally benign process cyclohexanone and 2-methylfuran[J]. Green Chemistry, 2006, 8(1): 107-109. [10] ZHENG H Y, ZHU Y L, HUANG L, ZENG Z Y, WAN H J, LI Y W. Study on Cu-Mn-Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process[J] . Catalysis Communications, 2008, 9(3): 342-348. [11] LESSARD J, MORIN J F, WEHRUNG J F, MAGNIN D, CHORNET E. High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran[J]. Topics in Catalysis,2010,53(15-18): 1231-1234. [12] CHANG X, LIU A F, CAI B, LUO J C, WU W B, YU J T. Catalytic transfer hydrogenation of furfural to 2-methylfuran and 2-methyltetrahydrofuran over bimetallic copper-palladium catalysts[J]. Chemsuschem, 2016, 9(23): 3330-3337. [13] HUTCHINGS G S, LUC W, LU Q, ZHOU Y, VLACHOS D G, JIAO F. Nanoporous Cu-Al-Co alloys for selective furfural hydrodeoxygenation to 2-methylfuran[J]. Industrial Engineering Chemistry Research, 2017,56(14): 3866-3872. [14] POPA T, ZHANG Y L, JIN E L, FAN M H. An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol[J].Applied Catalysis A-General, 2015, 505: 52-61. [15] DING T M, TIAN H S, LIU J C, WU W B, YU J T. Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1,3-propanediol[J].Chinese Journal of Catalysis, 2016. 37(4): 484-493. [16] LI F, LU C S, LI X N. The effect of the amount of ammonia on the Cu0/Cu ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters,2014,25(11): 1461-1465. [17] YIN A Y, GUO X Y, DAI W L, FAN K N. Effect of initial precipitation temperature on the structural evolution and catalytic behavior of Cu/SiO2 catalyst in the hydrogenation of dimethyloxalate[J]. Catalysis Communications, 2011, 12(6): 412-416. [18] PERNICONE N, FANTINEL T, BALDAN C, RIELLO P, PINNA F. On the measurement of copper surface area by oxygen chemisorption[J]. Applied Catalysis A-General, 2003. 240(1-2): 199-206. [19] Huang Z W, Cui F, Xue J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition-precipitation methods: texture,structure,and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol [J]. Catalysis Today, 2012, 183(1): 42-51. [20] Zhang C C, WANG D H, ZHU M Y, YU F, DAI B. Effect of Different Nano-Sized Silica Sols as Supports on the Structure and Properties of Cu/SiO2 for Hydrogenation of Dimethyl Oxalate[J]. Catalysts, 2017, 7(3): 12.
3. 毕业设计(论文)进程安排
起讫日期 工作内容 2018.2.1-2018.3.8 课题相关文献的阅读 2018.3.9-2018.5.1 实验内容(催化剂制备、反应考察、测试与表征) 2018.5.8-2018.5.28 实验数据的处理与图谱分析 2018.5.29-2018.6.10 毕业论文的撰写
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料