气体扩散电极的制备及其性能测试任务书
2020-06-26 19:48:00
1. 毕业设计(论文)的内容和要求
内容:研究气体扩散电极结构和孔道设计,支撑体的选择、催化层厚度以及碳黑和PTFE不同比例对过氧化氢产量以及电流效率的影响,优化参数,确定最佳电流、曝气量、电解液的循环液速以及pH值 要求:(1)熟练掌握电芬顿反应的基本原理;(2)熟练掌握气体扩散电极的制备方法;(3)熟练掌握过氧化氢的浓度测量;
2. 参考文献
[1] W.R.P. Barros, R.M. Reis, R.S. Rocha, M.R.V. Lanza, Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine, Electrochim. Acta. 104 (2013) 12-18. [2] I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system, Angew. Chem. Int. Ed. 42 (2003) 3653-3655. [3] Z.M. Qiang, J.H. Chang, C.P. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions, Water. Res. 36 (2002) 85-94. [4] N. Borr#224;s, C. Arias, R. Oliver, E. Brillas, Mineralization of desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond anode and an oxygen-diffusion cathode, Chemosphere. 85 (2011) 1167-1175. [5] X.W. Zhang, J.L. Fu, Y. Zhang, L.C. Lei, A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in electro-Fenton system, Sep. Purif. Technol. 64 (2008) 116-123. [6] L. Ma, M.H. Zhou, G.B. Ren, W.L. Yang, L. Liang, A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation, Electrochim. Acta. 200 (2016) 222-230. [7] M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: Principles and applications, a review, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577-2641. [8] X.M. Yu, M.H. Zhou, G.B. Ren, L. Ma, A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton, Chem. Eng. J. 263 (2015) 92-100. [9] Y.P. Sheng, Y. Zhao, X.L. Wang, R. Wang, T. Tang, Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating, Electrochim. Acta. 133 (2014) 414-421. [10] L. Zhou, Z.X. Hu, C. Zhang, Z.H. Bi, T. Jin, M.H. Zhou, Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode, Sep. Purif. Technol. 111 (2013) 131-136. [11] G.Q. Zhang, F.L. Yang, M.M. Gao, X.H. Fang, L.F. Liu, Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions, Electrochim. Acta. 53 (2008) 5155-5161. [12] O. Scialdone, A. Galia, S. Sabatino, Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor, Electrochem. Commun. 26 (2013) 45-47. [13] M.H. Zhou, Q.H. Yu, L.C. Lei, G. Barton, Electro-Fenton method for the removal of methyl red in an efficient electrochemical system, Sep. Purif. Technol. 57 (2007) 380-387. [14] G.S. Xia, Y.H. Lu, H.B. Xu, An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode, Sep. Purif. Technol. 156 (2015) 553-560. [15] W. Ren, D.Y. Tang, X.S. Lu, J. Sun, M. Li, S. Qiu, D.J. Fan, Novel multilayer ACF@rGO@OMC cathode composite with enhanced activity for electro-Fenton degradation of phthalic acid esters, Ind. Eng. Chem. Res. 55 (2016) 11085-11096. [16] W.R.P. Barros, R.M. Reis, R.S. Rocha, M.R.V. Lanza, Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine, Electrochim. Acta. 104 (2013) 12-18. [17] F.L. Silva, R.M. Reis, W.R.P. Barros, R.S. Rocha, M.R.V. Lanza, Electrogeneration of hydrogen peroxide in gas diffusion electrodes: Application of iron (II) phthalocyanine as a modifier of carbon black, J. Electroanal. Chem. 722-723 (2014) 32-37. [18] W.R.P. Barros, T. Ereno, A.C. Tavares, M.R.V. Lanza, In situ electrochemical generation of hydrogen peroxide in alkaline aqueous solution by using an unmodified gas diffusion electrode, Chemelectrochem. 2 (2015) 714-719. [19] F.K. Yu, M.H. Zhou, X.M. Yu, Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration, Electrochim. Acta. 163 (2015) 182-189. [20] J.N. Tian, A.M. Olajuyin, T.Z. Mu, M.H. Yang, J.M. Xing, Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process, Environ. Sci. Pollut. R. 23 (2016) 11574-11583. [21] J.N. Tian, J.X Zhao, A.M. Olajuyin, M.M. Sharshar, T.Z Mu, M.H. Yang, J.M. Xing, Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration, Environ. Sci. Pollut. R. 23 (2016) 15471-15482. [22] C. Zhang, L. Zhou, J. Yang, X.M. Yu, Y.H. Jiang, M.H. Zhou, Nanoscale zero-valent iron/AC as heterogeneous Fenton catalysts in three-dimensional electrode system, Environ. Sci. Pollut. R. 21 (2014) 8398-8405. [23] E. Isarain-Ch#225;vez, C. Arias, P.L. Cabot, F. Centellas, R.M. Rodr#237;guez, J.A. Garrido, E. Brillas, Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2 regeneration, Appl. Catal. B-Environ. 96 (2010) 361-369. [24] G.S. Xia, Y.H. Lu, H.B. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochim. Acta. 158 (2015) 390-396. [25] E. Brillas, I. Sire#769;s, M.A. Oturan, Electro-Fenton Process and related electrochemical technologies based on Fenton#8217;s reaction chemistry, Chem. Rev. 109 (2009) 6570-6631. [26] M.H.M.T. Assumpccedil;atilde;o, A. Moraes, R.F.B. De Souza, I. Gaubeur, R.T.S. Oliveira, V.S. Antonin, G.R.P. Malpass, R.S. Rocha, M.L. Calegaro, M.R.V. Lanza, M.C. Santos, Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis, Appl. Catal. A-Gen. 411-412 (2012) 1-6. [27] A.D. Pozzo, L.D. Palma, C. Merli, E. Petrucci, An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide, J. Appl. Electrochem. 35 (2005) 413-419. [28] M. Sudoh, H. Kitaguchi, K. Koide, Electrochemical production of hydrogen peroxide by reduction of oxygen, J. Chem. Eng. Jpn. 18 (1985) 409-414. [29] Y. Zhang, M.M. Gao, S.G. Wang, W.Z. Zhou, Y.H. Sang, X.H. Wang, Integrated electro-Fenton process enabled by a rotating Fe3O4/gas diffusion cathode for simultaneous generation and activation of H2O2, Electrochim. Acta. 231 (2017) 694-704.
3. 毕业设计(论文)进程安排
3月份:熟悉环境、看相关文献了解制备方法,下一步进行实验制备。
4月份:实验室制备气体扩散电极,表征与分析。
5月份:进行结果讨论分析以及论文撰写。
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料