登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 电子信息类 > 电子信息工程 > 正文

基于MATLAB的图像复原与重建方法的研究与实现文献综述

 2020-04-29 18:52:10  

1.目的及意义

1.1 研究目的及意义

随着人类社会的进步和科学技术的发展,人们对信息处理和信息交流的要求越来越高。人们传递信息的主要媒介是语音和图像。在接受的信息中,听觉信息占20%,视觉信息占60%,其他如味觉,嗅觉,触觉总的加起来不超过20%。图像信息处理是人们视觉延续的重要手段。人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。

数字图像处理是将图像信号转换成数字格式,并通过计算机对它们进行处理。图像复原过程往往是对提高图像质量起着重要的作用的数字图像处理方法。图像处理中的一个重要的研究分支是图像重建,其意义在于要检测到获得物体的内部结构图像,而不会其造成任何物体上的损伤。在本文中,先对图像复原与图像重建进行概述,然后介绍几种图像复原技术与图像重建方法。通过MATLAB实验程序获得实际处理效果。

1.2 国内外研究现状

图像复原作为图像处理的一个重要分支,对于该问题国内外展开了诸多关键技术的研究。实际上,图像复原设计三个方面的内容:退化图像的成像模型,图像复原算法和复原图像的评价标准。不同的成像模型、问题空间、优化规则和方法都会导致不同的图像复原算法。适用于不同的应用领域。现有的复原方法概括为以下几个类型:去卷积复原算法、线性代数复原、图像盲反卷积算法等,其他复原方法多是这三类的衍生和改进。其中,去卷积方法包括维纳去卷积、功率谱平衡与几何平均值滤波等,这些方法都是非常经典的图像复原方法。但是需要有关于原始图像、降质算子较多的先验信息和噪声平衡性的假设只适合于不变系统及噪声于信号不相关的情形,特别是降质算子病态的情况下,图像复原结果还不停理想。

线性代数复原技术是基于已知降质算子和噪声的统计特征,从而利用线性代数原理的复原技术,它为复原滤波器的数值提供了一个统一的设计思路和较透彻的解释。但是当降质函数有接近零的特征值时,复原的结果对噪声特别敏感,且该方法是把整幅图像一并处理,计算量大,同时也没有考虑纹理、边界等高频信号与噪声的区别,这将使纹理、边界等重要特征在图像复原过程中被破坏。针对这些问题,国外主要在改进算法的效率上做了许多工作,如全局最小二乘法、约束总体最小二乘法和正则化约束总体最小二乘法。

图像盲反卷积是图像复原的另一个重要的手段,它针对没有或少有关于降质函数和真实信号灯先验知识的复原问题,直接根据退化图像来估计降质函数和真实信号。目前有以下几种算法:零叶面分离法、预先确定降质函数法、三次相关法、迭代盲反卷积法等。这些算法在先验信息不足的情况下对降质图像进行复原,由于原始图像以及点扩展函的先验知识只是部分已知的,造成图像复原的解往往不唯一,而且解的好坏与初始条件的选择以及附加的图像假设等直接有关。同时,由于加性噪声的影响使得图像的盲目复原成病态。即若对点扩展函数直接求逆进行复原,通常会带来高频噪声放大的问题导致算法性能的恶化,所以当图像的信噪比水平较低时获得的结果往往不太理想。

正则化方法作为一种解决病态反问题的常用方法,通常用图像的平滑性作为约束条件,但是这种正则化策略通常导致复原图像的边缘模糊。为了克服边缘退化问题,最近几年,不少学者对各种“边缘保持”的正则化方法进行了比较深入的研究,提出了一些减少边缘退化的正则化策略,这些策略通常需要引入非二次正则化泛函,从而使问题的求解成为一个非线性问题。沿着这一思路,Geman和Yang提出了“半二次正则化”的概念来解决这种策略中出现的非线性优化问题。其后,Charbonni等人在此基础上研究了一种新的半二次正则化方法。从而可以利用确定性算法来得到问题的最优解。另一个较新的发展使Vogel等人提出的基于全变差模型的图像复原算法。尽管这些算法都在一定意义上提高了复原图像的质量,但边缘模糊的问题并未得到理想的解决。

目前超分辨率重建方法分为两大类:频域法和空域法。频域法是在频域内解决图像内插问题,其观察模型是基于傅立叶变换的移位特性。Kim 将 Tsai 和 Huang 建立在频域上的算法模型扩展到包含噪声的情况。Vandewalle 提出对频谱混叠的图像在频域内运动估计后进行双三次插值的算法。频域方法有以下优点:理论简单,运算复杂度低,很容易实现并行处理。在空域类方法中,其线性空域观测模型涉及全局和局部运动、光学模糊、帧内运动模糊、空间可变点扩散函数、非理想采样以及其他一些内容。空域方法具有很强的包含空域先验约束的能力,例如马尔科夫随机场和凸集等先验S.Lertrattanpanich 提出一种新颖的基于空间网格和Delaunay 三角划分的方法,该方法对从高分辨率图像离散采样得到的低分辨率做Delaunay 三角划分,通过二维多项式近似每个Delaunay 三角形,利用每个三角形的近似二维多项式对其中的点进行插值得到高分辨率图像。Degnhard 等人提出了一种新的POCS 方法,此方法将标准POCS 的快速收敛分解为对确定约束集合的一步步收敛,它在增加离散确定约束方面更有效,并可以加快重建的速度。

{title}

2. 研究的基本内容与方案

{title}

2.1 基本内容与研究目的

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图