NaGdF4:Nd3 发光材料的制备及其性能研究任务书
2020-04-30 16:11:44
1. 毕业设计(论文)的内容和要求
稀土掺杂纳米发光材料由于其发射光谱稳定、谱带窄、化学稳定性高等特点,正逐步成为一种新兴的重要材料,并广泛应用于生物荧光成像、免疫分析、光动力治疗等医学领域。
近些年来,越来越多的研宄集中在了上转换发光领域,上转换发光通过多光子吸收或能量传递将长波长光转化为短波长光,通常是将近红外光转化为可见或紫外光,在生物荧光探针应用方面虽然有着谱带窄、探测灵敏度高、背景干扰低等优点,却受到生物组织穿透深度低、成像质量不高等缺点的限制。
nd3 掺杂发光材料能够吸收和发射出位于700-1100fnm近红外光,这一光谱范围被称为”近红外组织透明窗口”。
2. 参考文献
[1] L. Wondraczek, E. Tyystjarvi, J. Mendez-Ramos, F.A. Muller, Q. Zhang, Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis, Adv Sci (Weinh) 2(12) (2015) 1500218. [2] M.K. Tsang, G. Bai, J. Hao, Stimuli responsive upconversion luminescence nanomaterials and films for various applications, Chem Soc Rev 44(6) (2015) 1585-607. [3] G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Agren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3 )/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging, ACS Nano 6(9) (2012) 8280-7. [4] G. Chen, T.Y. Ohulchanskyy, W.C. Law, H. Agren, P.N. Prasad, Monodisperse NaYbF4:Tm3 /NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties, Nanoscale 3(5) (2011) 2003-8. [5] H. Liu, M.K. Jayakumar, K. Huang, Z. Wang, X. Zheng, H. Agren, Y. Zhang, Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications, Nanoscale 9(4) (2017) 1676-1686. [6] J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications, Chem Rev 115(1) (2015) 395-465. [7] G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem Rev 114(10) (2014) 5161-214. [8] R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion, Nature Nanotechnology 10(3) (2015) 237. [9] X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chem Soc Rev 42(1) (2013) 173-201. [10] Y. Ding, X. Teng, H. Zhu, L. Wang, W. Pei, J.J. Zhu, L. Huang, W. Huang, Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission, Nanoscale 5(23) (2013) 11928-32. [11] J. Chen, J.X. Zhao, Upconversion nanomaterials: synthesis, mechanism, and applications in sensing, Sensors (Basel) 12(3) (2012) 2414-35. [12] V.D.E. Bm, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Cheminform 11(47) (2009) 11081. [13] F. Auzel, Upconversion and anti-Stokes processes with f and d ions in solids, Cheminform 35(16) (2004) 139. [14] J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, H. Zhang, Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3 , Er3 Nanocrystals/Submicroplates at Low Doping Level, Journal of Physical Chemistry B 112(49) (2008) 15666-15672. [15] J.H. Zeng, T. Xie, Z.H. Li, Y.D. Li, Monodispersed Nanocrystalline Fluoroperovskite Up-Conversion Phosphors, Cryst Growth Des 7(12) (2007) 2774-2777. [16] M. Wu, E.H. Song, Z.T. Chen, S. Ding, S. Ye, J.J. Zhou, S.Q. Xu, Q.Y. Zhang, Single-band red upconversion luminescence of Yb3 #8211;Er3 via nonequivalent substitution in perovskite KMgF3 nanocrystals, Journal of Materials Chemistry C 4(8) (2016) 1675-1684. [17] E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, G. Dong, Q. Zhang, Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3 ,Mn2 , Journal of Materials Chemistry C 1(27) (2013) 4209. [18] M. Wu, X.F. Jiang, E.H. Song, J. Su, Z.T. Chen, W.B. Dai, S. Ye, Q.Y. Zhang, Tailoring the upconversion of ABF3:Yb3 /Er3 through Mn2 doping, Journal of Materials Chemistry C 4(40) (2016) 9598-9607. [19] E. Song, Z. Chen, M. Wu, S. Ding, S. Ye, S. Zhou, Q. Zhang, Room-Temperature Wavelength-Tunable Single-Band Upconversion Luminescence from Yb3 /Mn2 Codoped Fluoride Perovskites ABF3, Advanced Optical Materials 4(5) (2016) 798-806. [20] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature 437(7055) (2005) 121-4. [21] V. Pischedda, G. Ferraris, G. Raade, Single-crystal X-ray diffraction study on neighborite (NaMgF3) from Gjerdingselva, Norway, Neues Jahrbuch f#252;r Mineralogie - Abhandlungen: Journal of Mineralogy and Geochemistry 182(1) (2005) 23-29. [22] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32(5) (1976) 751-767. [23] S. Zeng, Z. Yi, W. Lu, C. Qian, H. Wang, L. Rao, T. Zeng, H. Liu, H. Liu, B. Fei, J. Hao, Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn2 Doping, Advanced Functional Materials 24(26) (2014) 4051-4059. [24] D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, Y. Wang, Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping, Journal of the American Chemical Society 132(29) (2010) 9976-9978. [25] V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften 14(21) (1926) 477-485. [26] C. Randall, A. Bhalla, T. Shrout, L. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order, Journal of Materials Research 5(4) (1990) 829-834. [27] G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic#8211;inorganic perovskites: new tricks for an old dog, Chemical Science 5(12) (2014) 4712-4715. [28] X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, J. Lin, Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties, J Colloid Interface Sci 329(1) (2009) 103-6. [29] F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature 463(7284) (2010) 1061-5. [30] S. Zeng, G. Ren, C. Xu, Q. Yang, Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping, CrystEngComm 13(12) (2011) 4276. [31] S.M. Lee, S.N. Cho, J. Cheon, Anisotropic Shape Control of Colloidal Inorganic Nanocrystals, Advanced Materials 15(5) (2003) 441-444. [32] S. Zeng, G. Ren, C. Xu, Q. Yang, High uniformity and monodispersity of sodium rare-earth fluoride nanocrystals: controllable synthesis, shape evolution and optical properties, CrystEngComm 13(5) (2011) 1384-1390. [33] W. Qin, Z. Liu, C. Sin, C. Wu, G. Qin, Z. Chen, K. Zheng, Multi-ion cooperative processes in Yb3 clusters, Light: Science Applications 3(8) (2014) e193-e193. [34] B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells, Phys Chem Chem Phys 11(47) (2009) 11081-95. [35] W.B. Pei, B. Chen, L. Wang, J. Wu, X. Teng, R. Lau, L. Huang, W. Huang, NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3 x):Yb/Er upconversion nanocrystals, Nanoscale 7(9) (2015) 4048-54. [36] M. Pang, X. Zhai, J. Feng, S. Song, R. Deng, Z. Wang, S. Yao, X. Ge, H. Zhang, One-step synthesis of water-soluble hexagonal NaScF4:Yb/Er nanocrystals with intense red emission, Dalton Trans 43(26) (2014) 10202-7. [37] D. Chen, L. Lei, R. Zhang, A. Yang, J. Xu, Y. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals, Chem Commun (Camb) 48(86) (2012) 10630-2. [38] F. Vetrone, J. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Significance of Yb3 concentration on the upconversion mechanisms in codoped Y2O3:Er3 , Yb3 nanocrystals, Journal of Applied Physics 96(1) (2004) 661-667. [39] S. Zeng, G. Ren, Q. Yang, Fabrication, formation mechanism and optical properties of novel single-crystal Er3 doped NaYbF4 micro-tubes, Journal of Materials Chemistry 20(11) (2010) 2152.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 11月25号到1月18号 查阅国内外相关文献,掌握制备发光材料的工艺方法 1月19号到2月24号 放寒假 2月25号到3月25号 探讨荧光粉的制备工艺 3月26号到4月30号 制备不同浓度Nd掺杂的NaGdF4上转换发光材料 5月1号到5月31号 使用相关软件处理分析实验数据,结合理论知识总结实验结果 6月1号到6月15号 写毕业论文,准备答辩
您可能感兴趣的文章
- 利用污泥和低质粉煤灰制备高强度陶粒外文翻译资料
- 注蒸汽井中硅含量对水泥石抗压强度的影响外文翻译资料
- 碳纳米管和二氧化锰纳米粒子修饰的少层石墨烯在高性能超级电容器中的应用外文翻译资料
- 高能MnO2纳米线/石墨烯和石墨烯不对称电化学电容器外文翻译资料
- 影响立式辊磨机性能的操作参数外文翻译资料
- 水泥行业立式辊磨机及其性能参数研究进展外文翻译资料
- 立式辊磨机遇滚磨机基于能量的比较外文翻译资料
- 一种工作在500℃以下用于固体氧化物燃料电池的铌和钽共掺杂钙钛矿阴极外文翻译资料
- 层状钙钛矿A位缺陷的理解: 促进质子陶瓷电化学电池水氧化和氧还原的双反应动力学外文翻译资料
- 基于细菌纤维素/木质素的柔性高石墨化碳气凝胶: 无催化剂合成及其在储能装置中的应用外文翻译资料