La系元素掺杂对石榴石型固态电解质结构及性能的影响任务书
2020-04-17 20:28:18
1. 毕业设计(论文)的内容和要求
1、内容: 传统商业化锂离子电池采用有机电解液,存在着易燃、易爆、易挥发等严重的安全隐患,制约了锂离子电池的发展。
采用固态电解质替代液态电解质开发全固态锂离子电池对于解决锂离子电池安全问题有着重要意义。
无机全固态电池采用无机物作为固态电解质,其具有锂离子电导率高、热稳定好、安全性能极高等优点。
2. 参考文献
[1] FAN H, ZHOU D, FAN L, et al. Development on In-situ Synthesis of Gel Polymer Electrolyte for Lithium Batteries [J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 134-9. [2] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films [J]. Solid State Ionics, 1992, 53(92): 47-54. [3] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries [J]. Journal of Power Sources, 1992, 43(s 1-3): 103-10. [4] RANGASAMY E, WOLFENSTINE J, ALLEN J, et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte [J]. Journal of Power Sources, 2013, 230(230): 261-6. [5] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie, 2010, 38(50). [6] XISHU WANG, JIE LIU, RUI YIN, et al. High lithium ionic conductivity of garnet-type oxide Li7 xLa3Zr2-xSmxO12 (x=0-0.1) ceramics [J]. Materials Letters, 2018, 231:43-46. [7] MURUGAN R, RAMAKUMAR S, JANANI N. High Conductive Yttrium Doped Li7La3Zr2O12 Cubic Lithium Garnet [J]. Electrochemistry Communications, 2011, 13(12): 1373-5. [8] DHIVYA L, JANANI N, PALANIVEL B, et al. Li transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets [J]. Aip Advances, 2013, 3(8): 437. [9] WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries [J]. Acs Applied Materials Interfaces, 2017, 9(14): 12461. [10] MATSUI M, TAKAHASHI K, SAKAMOTO K, et al. Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12[J]. Dalton Transactions, 2014, 43(3): 1019-24. [11] TENG S, TAN J, TIWARI A. Recent developments in garnet based solid state electrolytes for thin film batteries [J]. Current Opinion in Solid State Materials Science, 2014, 18(1): 29-38. [12] AWAKA J, TAKASHIMA A, KATAOKA K, et al. ChemInform Abstract: Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 42(18): no-no. [13] ZHANG Y, CHEN F, RONG T, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes [J]. Journal of Power Sources, 2014, 268(3): 960-4. [14] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-52. [15] MEIER K, LAINO T, CURIONI A. Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations [J]. Journal of Physical Chemistry C, 2014, 118(13): 6668#8211;79. [16] ALLEN J L, WOLFENSTINE J, RANGASAMY E, et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 206(1): 315-9. [17] LEE J M, KIM T, BAEK S W, et al. High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction [J]. Solid State Ionics, 2014, 258(5): 13-7. [18] HU Z, LIU H, RUAN H, et al. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction [J]. Ceramics International, 2016, 42(10): 12156-60. [19] KUMAR P J, NISHIMURA K, SENNA M, et al. A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery [J]. Rsc Advances, 2016, 6(67): [20] KOTOBUKI M, KANAMURA K, SATO Y, et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12solid electrolyte [J]. Journal of Power Sources, 2011, 196(18): 7750-4. [21] BUSCHMANN H, D LLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J]. Physical Chemistry Chemical Physics Pccp, 2011, 13(43): 19378-92. [22] CHEN R J, HUANG M, HUANG W Z, et al. Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12[J]. Solid State Ionics, 2014, 265(6): 7-12. [23] CHENG L, PARK J S, HOU H, et al. Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12 [J]. Journal of Materials Chemistry A, 2013, 2(1): 172-81. [24] XIE H, LI Y, GOODENOUGH J B. Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure [J]. Materials Research Bulletin, 2012, 47(5): 1229-32. [25] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure [J]. Solid State Ionics, 2011, 185(1): 42#8211;6. [26] SAKAMOTO J, RANGASAMY E, KIM H, et al. Synthesis of nano-scale fast ion conducting cubicLi7La3Zr2O12[J]. Nanotechnology, 2013, 24(42): 424005. [27] JIN Y, MCGINN P J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method [J]. Journal of Power Sources, 2011, 196(20): 8683-7. [28] LI Y, HAN J T, WANG C A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 209(4): 278-81.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2月25日 ~3月3日 确定课题,布置任务,阅读文献资料,并进一步检索文献。
3月4日 ~3月17日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。
3月18日 ~ 3月24日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。
您可能感兴趣的文章
- 利用污泥和低质粉煤灰制备高强度陶粒外文翻译资料
- 注蒸汽井中硅含量对水泥石抗压强度的影响外文翻译资料
- 碳纳米管和二氧化锰纳米粒子修饰的少层石墨烯在高性能超级电容器中的应用外文翻译资料
- 高能MnO2纳米线/石墨烯和石墨烯不对称电化学电容器外文翻译资料
- 影响立式辊磨机性能的操作参数外文翻译资料
- 水泥行业立式辊磨机及其性能参数研究进展外文翻译资料
- 立式辊磨机遇滚磨机基于能量的比较外文翻译资料
- 一种工作在500℃以下用于固体氧化物燃料电池的铌和钽共掺杂钙钛矿阴极外文翻译资料
- 层状钙钛矿A位缺陷的理解: 促进质子陶瓷电化学电池水氧化和氧还原的双反应动力学外文翻译资料
- 基于细菌纤维素/木质素的柔性高石墨化碳气凝胶: 无催化剂合成及其在储能装置中的应用外文翻译资料