微反应器-固相法制备锂离子电池高压正极材料LiCoPO4毕业论文
2022-01-31 21:44:04
论文总字数:16818字
摘 要
磷酸钴锂(LiCoPO4)因其较高的工作电位(4.8 V vs Li/Li )和理论容量(167 mAh g−1)而受到人们的普遍关注,与目前使用的材料相比,具备较高的能量密度。此外,橄榄石结构LiCoPO4由于其P-O共价键键能较高,所以具有优良的热稳定性和结构稳定性,是一种安全性能优异的正极材料。
本文通过微反应器-固相法合成了LiCoPO4纳米正极材料,讨论了不同水浴温度对前驱体中杂质转化的影响,并对LiCoPO4进行了不同碳源包覆改性研究,对材料进行X射线衍射(XRD)物相组成分析;用扫描电镜(SEM)和透射电镜(TEM)对材料颗粒形貌分析。通过蓝电测试系统和电化学工作站进行电化学性能测试。
结果表明,在60 ℃下水浴1 h条件下合成的前驱体样品中杂质均全部转化,通过煅烧制备的LiCoPO4正极材料接近纯相。其具有较好的电化学性能表现。通过测试:在0.1C倍率下首次放电容量达到111.2 mAh g-1,可以达到其理论容量的66%。在不同碳源包覆改性实验中发现,在残碳量大致相同的情况下,以5 wt%乙炔黑作为碳源包覆使材料放电容量提高最多,达到142.6 mAh g-1,但对循环性能改善不明显;而10 wt%葡萄糖和6 wt%酚醛树脂作为碳源包覆改善了其循环性能,但对放电容量的提升较大,达到137 mAh g-1左右。不同种类的碳源热分解后残碳量不同,形态也大相径庭,最终合成材料的电化学性能的不同。
关键词: 锂离子电池 微反应器 共沉淀法 正极材料 LiCoPO4
ABSTRACT
Lithium cobalt phosphate (LiCoPO4) has attracted great attention owing to its high operating potential(4.8 V vs. Li/Li ) and good theoretical capacity(167 mAh g−1), leading to high energy density compared with currently used materials. In addition, LiCoPO4 with an olivine structure is considered as an excellent safe cathode material, since it has high thermal and structural stability derived from the strong P–O covalent band.
In this paper, nano-sized LiCoPO4 cathode materials were synthesized by solid state method assisted with micro-reactor. The effects of different water bath temperatures on the transformation of impurities in the precursor were discussed, and the modification of LiCoPO4 with different carbon sources was studied. The phase composition, morphology of precursors and corresponding calcined product were analyzed by X-ray diffraction (XRD),scanning electron microscopy (SEM) and transmission electron microscopy (TEM)..And the electrochemical properties of the samples were tested by LAND electric test system and CHI electrochemical workstation.
The experimental results show that when the molar ratio of Li:Co:P in the reactants is 3:1:1, the CoHPO4·1.5H2O impurity in the precursor sample is completely transformed to Co3(PO4)2·8H2O after water bath heating at 60 ℃ for 1 h. The discharge capacity of systhesized pure LiCoPO4 cathode material is 111.2 mAh g-1 at 0.1 C. For the carbon coated samples, with nearly same amount of pyrolytic carbon after calcining, it was found that the sample LiCoPO4/AB material exhibits the highest discharge capacity of 142.6 mAh g-1, but the cyclic performance was not improved obviously. While the LiCoPO4/G and LiCoPO4/PAS show almost equal capacity about 137 mAh g-1,and their cycling performance were much improved,compared with the LiCoPO4/AB. The different electrochemical properties of these materials is ascribed to the different morphology and residual amount of carbon after their pyrolyzation at high temperature.
KEYWORDS: Li-ion battery;Micro-reactor;Co-precipitation method;
Cathode material;LiCoPO4
目录
摘要 I
ABSTRACT II
第一章 文献综述 1
1.1 引言 1
1.2 锂离子电池发展历程 1
1.3 锂离子电池正极材料 2
1.3.1 层状结构正极材料 2
1.3.2 尖晶石结构正极材料 2
1.3.3 橄榄石结构正极材料 3
1.4 磷酸钴锂正极材料 3
1.5 本论文研究背景及内容 4
1.5.1研究背景 4
1.5.2 研究内容 4
第二章 实验方法 5
2.1 引言 5
2.2 实验试剂和实验设备 5
2.2.1 实验试剂 5
2.2.2 实验设备 5
2.3 LiCoPO4正极材料的制备 6
2.3.1 前驱体的制备 6
2.3.2 LiCoPO4正极材料和LiCoPO4/C材料的制备 7
2.4材料表征 7
2.4.1 物相分析 8
2.4.2 形貌分析 8
2.5 材料的电化学性能分析 8
2.5.1 电极的制备及扣式电池的装配 8
2.5.2 电化学性能测试 9
第三章 微反应器-固相法制备LiCoPO4正极材料 10
3.1 引言 10
3.2 锂盐浓度不同对产物的影响 10
3.2.1 前驱体的制备 10
3.2.2前驱体物相分析 10
3.2.3最终产物的物相分析 11
3.2.4最终产物的形貌分析 12
3.3 水浴温度对产物的影响 13
3.3.1 杂质产生原因分析 13
3.3.2 水浴前驱体的除杂研究 15
3.3.2.1物相分析 16
3.3.2.2形貌分析 16
3.3.3.3电化学性能分析 17
3.4 LiCoPO4的碳包覆改性性能研究 18
3.4.1 碳源种类对LiCoPO4/C物相的影响 18
3.4.2 碳源种类对LiCoPO4/C形貌的影响 19
3.4.3 碳源种类对LiCoPO4/C电化学性能的影响 20
第四章 结论与展望 22
4.1 结论 22
4.2 展望 22
参考文献 24
致谢 26
第一章 文献综述
1.1 引言
能源是人类社会发展不可或缺的关键要素,随着化石能源用量的增加,环境污染问题也日趋严重。CO2等温室气体排放量的增加造成了温室效应的不断加剧,对生态环境造成了严重破坏,对人类生存环境造成了极大威胁。为了避免能源枯竭,实现可持续发展,可再生能源始终是一个十分具有前景的课题。
请支付后下载全文,论文总字数:16818字
您可能感兴趣的文章
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文
- 靶电流对多弧离子镀TiN镀层微观结构和性能的影响毕业论文
- 基于溅射离子镀技术的黄色系镀层制备及色彩表征毕业论文
- 电参数对铝合金汽缸微弧氧化陶瓷层性能的影响毕业论文
- 基于溅射离子镀技术的蓝色系镀层制备及色彩表征毕业论文