氧化物改性聚丙烯隔膜锂硫电池制备及其电化学性能研究任务书
2020-06-29 20:29:18
1. 毕业设计(论文)的内容和要求
随着能源危机和环境污染的不断加剧,具有高理论比容量(1672 mah﹒g-1 )和高能量密度(2600wh kg-1)的锂硫电池备受关注。
相比于传统的锂离子电池,该体系的优点如下: (1)由于单质硫的资源丰富,故而锂-硫电池成本会比较低;(2)硫元素在常温下无毒,对于环境友好;(3)锂-硫电池有很宽的使用温度范围;(4)锂-硫电池具有长循环寿命的潜力。
但要实现锂硫电池的商业化,还要克服很多挑战:(1) 单质硫为电子绝缘体(5#215;10#8722;30 s/cm,25℃) (2) 单质硫向放电产物li2s 转化过程中有高达80%的体积膨胀(3) 臭名昭著的”穿梭效应”(4)阳极锂枝晶的形成。
2. 参考文献
1. Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S., Rechargeable lithium-sulfur batteries. Chemical reviews 2014, 114 (23), 11751-87; 2. Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S., A Lightweight TiO(2)/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries. Advanced materials 2015, 27 (18), 2891-8; 3. Sun, W.; Ou, X.; Yue, X.; Yang, Y.; Wang, Z.; Rooney, D.; Sun, K., A simply effective double-coating cathode with MnO 2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochimica Acta 2016, 207, 198-206; 4.Xu, G.; Yan, Q.-b.; Wang, S.; Kushima, A.; Bai, P.; Liu, K.; Zhang, X.; Tang, Z.; Li, J., A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chemical Science 2017, 8 (9), 6619-6625; 5. Yang, L.; Li, G.; Jiang, X.; Zhang, T.; Lin, H.; Lee, J. Y., Balancing the chemisorption and charge transport properties of the interlayer in lithium#8211;sulfur batteries. Journal of Materials Chemistry A 2017, 5 (24), 12506-12512; 6. Wei, H.; Rodriguez, E. F.; Best, A. S.; Hollenkamp, A. F.; Chen, D.; Caruso, R. A., Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magn#233;li Ti4O7Microspheres for High-Performance Li-S Battery. Advanced Energy Materials 2017, 7 (4), 1601616; 7. Zhu, L.; Gu, L.; Zhou, Y.; Cao, S.; Cao, X., Direct production of a free-standing titanate and titania nanofiber membrane with selective permeability and cleaning performance. Journal of Materials Chemistry 2011, 21 (33), 12503; 8. Li, F.; Wang, G.; Wang, P.; Yang, J.; Zhang, K.; Liu, Y.; Lai, Y., High-performance lithium-sulfur batteries with a carbonized bacterial cellulose/TiO 2 modified separator. Journal of Electroanalytical Chemistry 2017, 788, 150-155; 9. Ren, Y. X.; Zhao, T. S.; Liu, M.; Wei, L.; Zhang, R. H., High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochimica Acta 2017, 242, 137-145; 10. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y., Improved lithium#8211;sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode#8211;separator interface. Energy Environ. Sci. 2014, 7 (10), 3381-3390; 11. Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A., Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature communications 2015, 6, 7760; 12. Li, F.; Liu, W.; Lai, Y.; Qin, F.; Zou, L.; Zhang, K.; Li, J., Nitrogen and sulfur co-doped hollow carbon nanofibers decorated with sulfur doped anatase TiO 2 with superior sodium and lithium storage properties. Journal of Alloys and Compounds 2017, 695, 1743-1752; 13. Zhu, L.-W.; Zhou, L.-K.; Li, H.-X.; Wang, H.-F.; Lang, J.-P., One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis. Materials Letters 2013, 95, 13-16; 14. Wang, G.; Yang, Y.; Han, D.; Li, Y., Oxygen defective metal oxides for energy conversion and storage. Nano Today 2017, 13, 23-39; 15. Liu, L.; Luo, C.; Xiong, J.; Yang, Z.; Zhang, Y.; Cai, Y.; Gu, H., Reduced graphene oxide (rGO) decorated TiO 2 microspheres for visible-light photocatalytic reduction of Cr(VI). Journal of Alloys and Compounds 2017, 690, 771-776; 16. Liu, F.; Xiao, Q.; Wu, H. B.; Sun, F.; Liu, X.; Li, F.; Le, Z.; Shen, L.; Wang, G.; Cai, M.; Lu, Y., Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS nano 2017, 11 (3), 2697-2705.
3. 毕业设计(论文)进程安排
12.22-1.13 查阅文献,翻译英文文献,开题 3.13-4.28 实验 4.28-5.12 论文中期检查 5.12-5.28 实验总结 5.28-6.9 撰写论文及论文答辩
您可能感兴趣的文章
- 表面活性剂改性疏水性Cu2O量子点作为高效钙钛矿太阳能电池顶部空穴传输材料外文翻译资料
- Nb 和 Ni 共掺杂 Mg(0001)氢解离扩散的理论研究:外文翻译资料
- 低温固相法制备锂离子电池正极材料LiFeSO4F毕业论文
- 锂空气电池新型正极催化剂Gd2Zr2O7的制备与性能研究毕业论文
- 酸类添加剂对beta”-Al2O3电泳沉积成型法的影响毕业论文
- CuZr非晶合金中短程有序结构及其与玻璃形成能力的关系研究毕业论文
- 靶电流对多弧离子镀TiN镀层微观结构和性能的影响毕业论文
- 基于溅射离子镀技术的黄色系镀层制备及色彩表征毕业论文
- 电参数对铝合金汽缸微弧氧化陶瓷层性能的影响毕业论文
- 基于溅射离子镀技术的蓝色系镀层制备及色彩表征毕业论文