纤维素纳米纤维/碳材料基超级电容器的结构与性能开题报告
2020-02-10 23:07:12
1. 研究目的与意义(文献综述)
随着全世界对资源和环境问题的日益重视,纤维素作为自然界中可再生资源,具有无毒、无味、可生物降解、生物相容性好等特点,有着巨大的市场潜力[1]。棉花、秸秆、麻类、木材、草本以及部分真菌、藻类都含有纤维素,其量多且分布广泛,可以作为提取纳米纤维素的来源。伴随着传统煤炭、石油的储量日益下降,且化工产品给生态环境带来了巨大的压力,纤维素作为天然高分子材料凭借其绿色清洁、低密度、高比强度比模量的优势成为了替代石油化工产品的最佳材料[2]。纤维素目前已经普遍应用于复合材料、建材、制浆造纸、涂料、医学等领域[3-6]。
近年来,可持续发展和环境友好理念在能源储存技术领域受到了广泛的关注。可再生原料、绿色合成路线和环保组件越来越多的应用于电池和超级电容器技术中[7-9]。纳米纤维素作为最有前景的绿色纳米材料之一,由于其杰出的机械强度、优异的柔韧性和大的长径比,在超级电容器电极材料中有着巨大应用价值[10]。因此研究者们将纳米纤维素作为活性导电物质的机械增强材料来获得的柔性导电材料用于超级电容器电极;碳材料通常具有低密度,高柔性,大表面积以及丰富的空隙结构,是超级电容器电极的理想活性材料。然而作为一种绝缘材料,纳米纤维素电极的导电性难以达到实际应用要求。炭化是提高生物质材料导电性的一种有效手段,将纳米纤维素在惰性气体下进行高温炭化可以有效提高其导电性。然而,炭化后的纳米纤维素比表面积相对较低,作为超级电容器电极时比容量有限。改善纳米纤维素的电化学性能可以从两个方面展开。一方面,向纳米纤维素基体中添加高表面积填料可以有效提高纳米纤维素基复合材料的比表面积,从而提高其电化学比容量。
2. 研究的基本内容与方案
2.1基本内容
1、文献调研,了解国内外相关研究概况和发展趋势,了解选题与社会、健康、安全、成本以及环境等因素的关系;
3. 研究计划与安排
第1-3周:查阅相关文献资料,完成英文翻译。明确研究内容,了解研究所需原料、仪器和设备。确定技术方案,并完成开题报告。
第4-8周:按照设计方案,制备碳化纳米纤维素/磺化碳纳米管复合电极。
第9-12周:采用sem、xrd、ftir、bet和超级电容器电化学性能等测试技术对复合材料的形貌、结构与性能进行表征。
4. 参考文献(12篇以上)
您可能感兴趣的文章
- 在200至300℃的温度下纤维素的水热降解外文翻译资料
- 对O-酰基肟光敏交联剂和丙烯酸丁酯组成的压敏胶一系列光聚合与光降解过程的直接流变学测量外文翻译资料
- 热和紫外线诱导的环氧/环氧丙烯酸酯胶粘剂的制备及其性能外文翻译资料
- 基于光敏可逆固液转换的可调光聚合物胶粘剂外文翻译资料
- 氢氧化物-催化键中近红外吸收的时间演化外文翻译资料
- 利用糖辅助机械力化学剥离技术一步法制备功能化氮化硼纳米片外文翻译资料
- 用于热管理的具有优异力学性能和超高热导率的兼容多功能氮化硼纳米片/聚合物薄膜外文翻译资料
- 油水分离材料用凹土棒复合微球的制备与表征油水分离材料用凹土棒复合微球的制备与表征外文翻译资料
- 单轴拉伸聚乙烯/氮化硼纳米复合薄膜金属状热导率外文翻译资料
- 高导热硅弹性体掺杂石墨烯纳米片和低共熔液体金属合金外文翻译资料