放射增敏靶向治疗载体合成与表征任务书
2020-06-23 20:44:16
1. 毕业设计(论文)的内容和要求
放射增敏剂的应用可以显著提高放射治疗的抗癌效率,同时大幅度减少辐照剂量,从而减小对周围正常组织造成的不可逆伤害。
纳米金因为制备简单,拥有良好的生物相容性,表面容易修饰,并且具有可调的光学性能,成为肿瘤放射治疗中最有前途的辐射敏感试剂。
为了达到良好的辐照增敏效果,纳米粒子必须充分被肿瘤细胞吸收,使纳米粒子拥有足够高的细胞吸收率是当前研究的一大热门。
2. 参考文献
1. Xie Q, Zhou Y, Lan G, et al. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways. Biochem Biophys Res Commun. 2014; 449(1):88#8211;93. 2. ES, Player A. Nanotechnology, nanomedicine, and the development of a new, effective therapies for cancer. Nanomedicine. 2005; 1(2):101#8211;109. 3. Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol. 2011;99(3):287#8211;292. 4. Kim R, Emi M, Tanabe K, et al. The role of apoptosis or nonapoptosis cell death in determining cellular response to anticancer treatment. EJSO. 2006;32(3):369#8211;377. 5. Zhang XD, Wu D, Shen X, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27):6408#8211;6419. 6. Escamilla-Perea L, Nava R, Pawelec B, et al. SBA-15-supported gold nanoparticles decorated by CeO2: structural characteristics and CO oxidation activity. Appl Catal A. 2010;381(1#8211;2):42#8211;53. 7. Duncan, R., and Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Adv. Drug. Deliv. Rev. 57, 2215#8211;2237. 8. Gelperina, S., Kisich, K., Iseman, M.D., and Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Resp. Crit. Care Med. 172, 1487#8211;1490. 9. Kitchens, K.M., Foraker, A.B., Kolhatkar, R.B., Swaan, P.W., and Ghandehari, H. (2007). Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 24, 2138#8211;2145. 10. Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W., and Ghandehari, H. (2008). Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm. 5, 364#8211;369. 11. Seib, F.P., Jones, A.T., and Duncan, R. (2007). Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J. Contr. Release 117, 291#8211;300. 12. Ryu JH, Koo H, Sun IC, et al. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012;64(13):1447#8211;1458. 13. Namiki Y, Fuchigami T, Tada N, et al. Nanomedicine for cancer: lipidbased nanostructures for drug delivery and monitoring. Acc Chem Res. 2011;44(10):1080#8211;1093. 14. Faraday M. The Bakerian Lecture: experimental relations of gold (and other metals) to light. Philos T R Soc A. 1857;147:145#8211;181. 15. Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev. 2013;65(5):663#8211;676. 16. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238#8211;7248. 17. Orendorff CJ, Sau TK, Murphy CJ. Shape-dependent plasmon-resonant gold nanoparticles. Small. 2006;2(5):636#8211;639. 18. Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM. Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev. 2010;62(3): 316#8211;328. 19. Liu H, Shen M, Zhao J, et al. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloids Surf B Biointerfaces. 2012;94:58#8211;67. 20. Meir R, Motiei M, Popovtzer R. Gold nanoparticles for in vivo cell tracking. Nanomedicine (Lond). 2014;9(13):2059#8211;2069.
3. 毕业设计(论文)进程安排
18. 2.26-18.3.4 文献查阅,了解课题 18. 3.5-18.3.11 英文文献翻译以及完成开题报告 18.3.12-18.4.4 按照实验计划进行试验 18.4.5-18.4.7 清明节休假 18.4.8-18.4.28 按照实验计划进行试验 18.4.29-18.4.30 进行中期检查 18.5.1-18.5.3 劳动节休假 18.5.4-18.5.31 进行实验并整理数据 18.6.1-18.6.14 撰写完成毕业论文 18.6.15-18.6.21 毕业论文答辩
您可能感兴趣的文章
- 在200至300℃的温度下纤维素的水热降解外文翻译资料
- 对O-酰基肟光敏交联剂和丙烯酸丁酯组成的压敏胶一系列光聚合与光降解过程的直接流变学测量外文翻译资料
- 热和紫外线诱导的环氧/环氧丙烯酸酯胶粘剂的制备及其性能外文翻译资料
- 基于光敏可逆固液转换的可调光聚合物胶粘剂外文翻译资料
- 氢氧化物-催化键中近红外吸收的时间演化外文翻译资料
- 利用糖辅助机械力化学剥离技术一步法制备功能化氮化硼纳米片外文翻译资料
- 用于热管理的具有优异力学性能和超高热导率的兼容多功能氮化硼纳米片/聚合物薄膜外文翻译资料
- 油水分离材料用凹土棒复合微球的制备与表征油水分离材料用凹土棒复合微球的制备与表征外文翻译资料
- 单轴拉伸聚乙烯/氮化硼纳米复合薄膜金属状热导率外文翻译资料
- 高导热硅弹性体掺杂石墨烯纳米片和低共熔液体金属合金外文翻译资料