耐高温银基焊点的制备及界面组织演变行为毕业论文
2021-04-21 23:24:15
摘 要
全球对环保日益重视,出台了政策限制铅在电子器件的应用,高温功率电子的高铅焊料(Pbgt;85wt.%)亟需被绿色高温焊料替代。虽然一些高温焊料已被提出,但是它们依然存在缺陷,并且互连需要的高温易损害电子元器件。而瞬时液相烧结连接(TLPS)技术可在相对低温下互连,并且制备出耐高温焊点,显示出极好的应用前景。基于此,本文采用TLPS技术将不同比例的银粉和铟粉成功制备出耐高温银铟焊点,借助光学显微镜、扫描电镜和电子探针仪器表征焊点界面的形貌、成分和物相,通过Image Pro Plus软件计算焊点的孔隙率,研究银铟配料比、互连温度峰值时间、老化时间对焊点组织形貌、成分、孔隙率的影响机制。实验结果显示:随着互连温度峰值时间的增长,焊点内孔隙率降低,生成更多的金属间化合物且分布更均匀,以银颗粒为骨架的结构更为密实;而孔洞数量和体积随老化时间的增加而逐渐减少和降低;其中,银铟配料比为6:4的焊点内富银金属间化合物最多,显示出最好的耐高温性能。
关键词:高温功率电子;瞬时液相烧结;耐高温银基焊点;金属间化合物;孔隙率
Abstract
The relevant policies had been proposed to restrict the use of lead in electronic devices for the consideration of environmental protection. High-temperature power electronic high-lead solders (Pbgt;85wt.%) need to be replaced by green high-temperature solders. Although some high-temperature solders have been proposed, they still have drawbacks, and the high temperatures required for interconnections can easily damage electronic components. The transient liquid phase sintering connection (TLPS) technology can be interconnected at a relatively low temperature, and the prepared of solder joints have high temperature resistance and show excellent application prospects. Based on this, the high-temperature silver indium solder joints were successfully prepared using TLPS technology with different ratio of silver powder and indium powder. The morphology, composition and phase of the solder joint interface were characterized by means of optical microscope, scanning electron microscope and electron probe apparatus. The porosity of the solder joints was calculated by Image Pro Plus software, and the influence mechanism of silver indium compound ratio, interconnect peak temperature time and aging time on the microstructure, composition and porosity of solder joints was studied. Experimental results show that with the increase of the peak time of interconnection temperature, the porosity of solder joints decreases, more intermetallic compounds are distributed evenly, and the structures with silver particles as the framework are more compact. The number and volume of holes within the solder joints decrease as the aging time increases. Besides, the silver-indium compound ratio of 6:4 has the most silver-rich intermetallic compounds in the solder joints, showing the best high-temperature resistance.
Key Words:High temperature electronics;Transient liquid phase sintering;High temperature silver base solder joints;Intermetallic compound;Porosity
目 录
第1章 绪论
1.1高温无铅钎料 1
1.2低温互连,高温服役 3
1.3 耐高温银基焊点 4
1.4 本文研究工作及意义 6
第2章 耐高温银基焊点的制备 7
2.1 试验材料及设备 7
2.1.1 实验材料 7
2.1.2 实验设备 7
2.2 试验过程 8
2.2.1 基板的处理 8
2.2.2 焊膏的制备 9
2.2.3 真空炉中施焊 10
2.3 耐高温银基焊点的表征及性能检测 12
2.3.1 焊点的物相表征 12
2.3.2 焊点孔隙率的检测 12
2.3.3 焊点微观形貌和成分的测定 12
第3章 实验结果与分析 14
3.1 耐高温银基焊点的表征及性能分析 14
3.1.1 银基焊点的界面形貌 14
3.1.2 焊点孔隙率的测定 16
3.2银基焊点的组织分析 18
第4章 实验总结与展望 23
4.1 耐高温银基焊点制备的实验结论 23
4.2 研究展望 24
参考文献 25
致谢 27
第1章 绪论
1.1高温无铅焊料
自1947年世界上发明第一只半导体晶体管开始,电子封装的历史也由此展开,并随着电路,器件和元件的发展,最终逐渐演变为当今的封装行业。电子封装主要由半导体芯片提供机械支撑、环境保护以及电流通路,同时还承担着信号的输入输出以及散热等作用。而且封装技术不仅仅直接影响着集成电路和电子元器件的光、电、热和机械等性能,还对其可靠性和成本有着至关重要的影响[1]。进入21世纪以来,高性能汽车,航空航天,国防军工和深层油气钻探等领域飞速发展,能够在更加极端的环境下工作,具有更大的功率、更高集成度、更高可靠性以及更低成本的电子设备就凸显重要性。这些功率电子器件在工作时,IGBT内部SiC功率芯片和陶瓷基板之间的芯片连接材料需承受300℃甚至500℃以上更高的高温,功率芯片耐高温封装连接结构简图如图1.1所示[2,3]。高铅焊料(Pbgt;85wt.%)因其优异的性能在微电子封装的高温领域中应用广泛,然而出于环境保护的考虑以及相关法律法规的要求,铅在电子产品中的添加受到了极大的限制,高性能的无铅焊料研究也成为材料界和电子界的热点课题之一[4,5]。