载人火星低轨道设计(Manned Mars Orbital Mission Design)毕业论文
2021-03-26 22:19:37
摘 要
Abstract II
1 绪论 1
1.1 背景及研究现状 1
1.2 面临的挑战 2
1.3 本文的目的及主要内容 2
1.4 预期市场 2
2 航天器结构配置 3
2.1 整体设计 3
2.2 质量设计 4
3 航天器系统配置 5
3.1 燃料系统 7
3.2 温度控制系统 8
3.2.1 被动温度控制系统 9
3.2.2 主动温度控制系统 10
3.3 环境控制系统 10
3.4 生命循环控制系统 11
3.4.1 空气质量 11
3.4.2 食物和水 12
3.4.3 废物处理 13
3.4.4 能源生产 13
4 轨线设计 14
4.1 2D轨线计算 14
4.1.1 上升阶段轨线设计 14
4.1.2 转移阶段轨线设计 16
4.2 3D轨线MATLAB计算建模 18
结论 21
参考文献 22
致 谢 25
摘 要
美国航天局近些年提出将于2030年实现载人火星登陆计划。此计划对于人类进步和科技发展具有重大意义。载人登陆计划一直以来都被视为高风险的任务,庞大的数据积累和拟实验能大大降低风险。目前,2018年载人火星轨道计划被广泛关注,它计划实现载人火星轨道飞行一定时间,同时为2030年载人登陆计划作准备。
本文基于现有航天科技与以往航天计划,意在设计2018年载人火星轨道计划,并证实其可靠性。论文主要设计了两大方面:第一是设计航天器,主要包括结构配置和系统配置。第二是设计轨线,主要包括2D平面估算和MATLAB 3D平面准确计算。
研究结果表明:在航天器的设计方面,设计将使用2个HAB模块,而不是1个MPLM和1个HAB,用于辐射防护的氢化氮化硼纳米管,各种氧气生成方法,用于被动热控制系统的MLI,主动热控制系统的散热器和水回路。其中一个HAB模块将包含维持生命所需的所有系统,如环境控制生命支持系统(ECLSS)。而HAB模块将包含所有用品,包括食物,水和科学实验.HAB模块和CPS将分别使用太空发射系统块1从地球单独发射,并在国际空间站组装。得到没有推进剂的航天器的干重为63,188.4公斤。运用SolidWorks软件模拟了航天器相应配置,证实各部分能够良好的配置到航天器中。
在轨线设计方面,通过运用Hohmann 转移轨道原理初步计算得出delta-V1和delta-V2分别是3.2km/s和2.8km/s.运用MATLAB建立轨道转换模型,精确计算于2018年5月6日从近地轨道出发,经180天至火星轨道转换的轨线,并计算得到开普勒轨道参数。
本文的特色在于系统的设计了2018年载人火星轨道计划,证实了计划的可行性,并使用MATLAB,Solidwork等软件模拟了飞行轨线和飞船配置。
关键词:2018年载人火星;飞船配置;轨线设计;建模仿真
Abstract
NASA has proposed a manned Mars landing program in 2030. This plan is of great significance to human progress and technological development. The manned landing program has long been regarded as a high-risk task, and huge data accumulation and quasi-experiments can greatly reduce the risk. At present, the 2018 manned Mars orbit program is widely watched, it plans to carry manned spacecraft to Marion orbit for some time, while preparing for the 2030 manned landing program.
This paper is based on the existing aerospace technology and the previous space program, intended to design the 2018 manned Mars orbit mission, and confirmed its reliability. The paper mainly designed two major aspects: the first is the design of spacecraft, including the structure and system configuration. The second is the design trajectory, including 2D plane estimation and MATLAB 3D plane accurate calculation.
The results show that in the design of spacecraft, the design will use two HAB modules instead of one MPLM and one HAB, boron nitride nanotubes for radiation protection, various oxygen generation methods for passive Thermal control system MLI, active heat control system of the radiator and water circuit. One of the HAB modules will contain all the systems needed to sustain life, such as the Environment Control Life Support System (ECLSS). The HAB module will contain all supplies, including food, water and scientific experiments. The HAB module and CPS will be used separately from the space launch system block 1 from the Earth alone and assembled at the International Space Station. The dry weight of the spacecraft without propellant was 63,188.4 kg. Using SolidWorks software to simulate the corresponding configuration of the spacecraft, confirmed that the parts can be well configured to the spacecraft.
In the trajectory design, the delta-V1 and delta-V2 are 3.2km / s and 2.8km / s respectively by using the Hohmann transfer orbit principle, and the orbital transformation model is established by MATLAB. Day from the orbit, starting from 180 days to Mars orbit trajectories, and calculate the Kepler orbit parameters.