丁二酸在低收缩BMC中的应用毕业论文
2022-07-03 09:08:57
论文总字数:43395字
摘 要
团状模塑料(BMC)在固化成型过程中会发生体积收缩,导致尺寸失控、力学性能降低和表面质量缺陷等问题。在本课题中我们把丁二酸作为新型小分子低收缩添加剂,它不同于常用的的大分子低收缩剂,具备更好的抗收缩效果。实验分两个阶段,第一阶段实验是在BMC样品中加入丁二酸(20%),调整不同的前酯化反应时间进行前酯化反应,然后通过样品收缩率测试得到最佳前酯化反应时间为3.0 h;然后在最佳前酯化反应时间的前提下将丁二酸的抗收缩效果与大分子低收缩剂的抗收缩效果相比,结果表明丁二酸的抗收缩效果明显好于大分子低收缩剂。第二阶段实验是以CaCO3含量、玻纤含量以及丁二酸含量为变量的三因素四水平正交实验,分析三个因素对BMC制品的体积收缩率和弯曲强度的影响。实验结果显示对体积收缩率影响最大的因素为CaCO3含量,而对弯曲强度影响最大的因素为玻纤的含量。综合考虑各因素对BMC试样的体积收缩率和弯曲强度的影响以及在经济效益方面影响,最终得到BMC试样的最佳原料配比为:UPR∶丁二酸∶CaCO3∶E-玻纤∶TBPB=100∶20∶200∶20∶1。通过差示扫描量热分析(DSC)显示,丁二酸加入后,将UPR的两步聚合过程转变为单一交联聚合,消除了聚酯自聚;魔角旋转核磁共振(HR/MAS NMR)对丁二酸的前酯化反应进行定量分析;扫描电子显微镜(SEM)表明,经过3.0h前酯化反应的固化样品形成了均一的平板式形貌。因此丁二酸对BMC的抗收缩包含两个过程:第一个过程是丁二酸与UPR树脂中过量二元醇的酯化反应,生成了水和热塑性聚酯;第二个过程是抑制UPR树脂的交联聚合,并消除聚酯自聚,从而降低了BMC的固化收缩率。
关键词:团状模塑料(BMC) 丁二酸 前酯化反应 收缩率 弯曲强度
The Application of Succinic Acid in Low-shrinkage
Bulk Molding Compounds
Abstract
Bulk Molding Compound (BMC) in the curing process will occur volume contraction, leading to uncontrolled dimensions, the reduce of mechanical properties, surface quality defects and other problems. In this issue, we use succinic acid as a novel small molecule low shrinkage agents, which is different from the common macromolecular low shrinkage agents, and succinic acid has better anti-shrinkage effect. The experiment was divided into two stages, the first stage was to join the succinic acid(20%)in BMC samples, and adjust different pre-esterification time to conduct the pre-esterification, then we got that the best pre-esterification time was 3 h through the sample shrinkage test; compared to the anti-shrinkage effect of the succinic acid and macromolecular low shrinkage agents under the premise of the best pre-esterification time, the results showed that the anti-shrinkage effect of the succinic acid was obviously better than the anti-shrinkage effect of macromolecular low shrinkage agents. The second stage was the variable orthogonal of three factors and four levels with the contents of CaCO3, glass fiber and succinic acid, then analyzed the influence of three factors on the volume shrinkage and bending strength of BMC products. The results of experiment showed that the biggest factor for volume shrinkage was the CaCO3 content, while the biggest factor for the bending strength was the content of glass fiber. Considering the influence of various factors on the volume shrinkage and bending strength of the BMC products and the influence in terms of economic efficiency, we can finally get the best ratio of raw materials of the BMC products: UPR꞉ succinic acid꞉CaCO3꞉E-Glass fiber꞉ TBPB =100꞉20꞉200꞉20꞉1. Differential scanning calorimetry (DSC) showed adding succinic acid transformed UPR two-step polymerization process into a single cross-linked polymerization process and eliminated the self-polymerization of polyester; pre-esterification of succinic acid was quantitatively analyzed by Magic angle spinning nuclear magnetic resonance (HR/MAS NMR); scanning electron microscopy (SEM) showed cured samples formed a uniform flat topography after 3.0h pre-esterification. Therefore, anti-shrink of succinic acid on the BMC contains two procedures: the first is the esterification of succinic acid with excessive diol in UPR resin, forming the thermoplastic polyester and water; the second is to inhibit UPR resin cross-linked polymerization and to eliminate the self-polymerization of polyester, thus to reduce the curing shrinkage rate of BMC.
Key Words: bulk molding compounds (BMC); succinic acid; pre-esterification reaction; shrinkage; bending strength
目 录
摘要……………………………………………………………………………… | I | |
ABSTRACT…………………………………………………………………… | II | |
第一章 文献综述…………………………………………………………… | 1 | |
1.1 BMC的简介……………………………………………………………… | 1 | |
1.1.1 国内外BMC的发展现状…………………………………………… | 1 | |
1.1.2 BMC成型工艺概述…………………………………………………… | 2 | |
1.1.3 BMC的应用…………………………………………………………… | 2 | |
1.1.4 BMC的研究方向……………………………………………………… | 4 | |
1.2 BMC低收缩的研究进展………………………………………………… | 7 | |
1.2.1 BMC体积收缩的内在机理………………………………………… | 7 | |
1.2.2 影响BMC体积收缩的外部因素…………………………………… | 8 | |
1.2.3 降低BMC收缩率的常用方法……………………………………… | 8 | |
1.3 低收缩添加剂(LSA)的概述………………………………………… | 9 | |
1.3.1 LSA经历的发展阶段………………………………………………… | 10 | |
1.3.2 LSA降低收缩的作用机理…………………………………………… | 11 | |
1.4 本课题的研究目的与内容……………………………………………… | 13 | |
1.4.1 研究内容……………………………………………………………… | 13 | |
1.4.2 研究目的……………………………………………………………… | 13 | |
第二章 实验部分…………………………………………………………… | 15 | |
2.1实验原理………………………………………………………………… | 15 | |
2.2实验思路………………………………………………………………… | 15 | |
2.2.1第一阶段实验………………………………………………………… | 16 | |
2.2.2第二阶段实验………………………………………………………… | 16 | |
2.3 BMC的制备……………………………………………………………… | 17 | |
2.3.1 实验原料……………………………………………………………… | 17 | |
| 17 | |
2.3.3 实验配方……………………………………………………………… | 18 | |
2.3.4 制备工艺……………………………………………………………… | 19 | |
2.4 宏观测试………………………………………………………………… | 20 | |
2.4.1 收缩率测试…………………………………………………………… | 20 | |
2.4.2 弯曲强度测试………………………………………………………… | 21 | |
2.5 微观表征………………………………………………………………… | 21 | |
2.5.1差热分析(DSC)…………………………………………………… | 21 | |
2.5.2 魔角旋转核磁共振(HR/MAS NMR)……………………………… | 22 | |
2.5.3扫描电子显微镜分析(SEM)………………………………………… | 22 | |
第三章 实验结果与分析…………………………………………………… | 23 | |
3.1不同前酯化反应时间对BMC试样性能的影响…………………… | 23 | |
3.1.1不同前酯化反应时间对BMC试样收缩率的影响…………… | 23 | |
3.1.2 丁二酸与大分子低收缩剂的抗收缩性比较………………………… | 24 | |
3.2 丁二酸低收缩作用机理分析………………………………………… | 25 | |
3.2.1 差热分析(DSC)…………………………………………………… | 25 | |
3.2.2 魔角旋转核磁共振分析(HR/MAS NMR)………………………… | 27 | |
3.2.3 扫面电镜形貌分析(SEM)………………………………………… | 28 | |
3.3 低收缩BMC试样组分掺量的确定……………………………… | 30 | |
3.3.1 正交实验方案及结果………………………………………………… | 30 | |
3.3.2 影响BMC制品收缩率的因素……………………………………… | 31 | |
3.3.3 影响BMC制品弯曲强度的因素…………………………………… | 33 | |
3.3.4 优化配方…………………………………………………………… | 35 | |
第四章 结论与展望………………………………………………………… | 37 | |
4.1 结论……………………………………………………………………… | 37 | |
4.2 展望……………………………………………………………………… | 38 | |
参考文献……………………………………………………………………… | 39 | |
致谢……………………………………………………………………………… | 42 |
第一章 文献综述
1.1 BMC的简介
BMC(Bulk Molding Compound)是团状模塑料的简称,是在不饱和聚酯树脂(简称UPR,Unsaturated Polyester Resins)的热压成型工艺基础上发展起来的一类重要复合材料品种。BMC主要由不饱和聚酯树脂(UPR)、填料(碳酸钙等无机填料)以及各种添加剂(如固化剂、脱模剂等)经充分混合后浸渍增强纤维加工而成的团状或块状热固性模塑预浸料[1~2]。因为BMC团状模塑料具有优良的电气性能,机械性能,耐热性,耐化学腐蚀性,而且适应多种成型工艺,满足各种产品对性能的要求,所以被广泛应用于电气部件、汽车部件、建筑、航天军工和电子塑封等领域[3~7]。
图1-1 BMC的基本组分 Figure 1-1 The basic components of BMC |
1.1.1 国内外BMC的发展现状
请支付后下载全文,论文总字数:43395字
您可能感兴趣的文章
- 在200至300℃的温度下纤维素的水热降解外文翻译资料
- 对O-酰基肟光敏交联剂和丙烯酸丁酯组成的压敏胶一系列光聚合与光降解过程的直接流变学测量外文翻译资料
- 热和紫外线诱导的环氧/环氧丙烯酸酯胶粘剂的制备及其性能外文翻译资料
- 基于光敏可逆固液转换的可调光聚合物胶粘剂外文翻译资料
- 氢氧化物-催化键中近红外吸收的时间演化外文翻译资料
- 利用糖辅助机械力化学剥离技术一步法制备功能化氮化硼纳米片外文翻译资料
- 用于热管理的具有优异力学性能和超高热导率的兼容多功能氮化硼纳米片/聚合物薄膜外文翻译资料
- 油水分离材料用凹土棒复合微球的制备与表征油水分离材料用凹土棒复合微球的制备与表征外文翻译资料
- 单轴拉伸聚乙烯/氮化硼纳米复合薄膜金属状热导率外文翻译资料
- 高导热硅弹性体掺杂石墨烯纳米片和低共熔液体金属合金外文翻译资料