高耸钢结构塔架承载力性能研究毕业论文
2021-04-21 21:30:11
摘 要
Abstract 6
第一章 绪论 7
1.1研究背景及意义 7
1.2 国内外研究现状 8
1.3 研究内容及主要工作 9
1.3.1 研究内容 9
1.3.2 主要工作 10
第二章 高耸钢结构塔架模型建立 11
2.1 引言 11
2.2 输电杆塔有限元模型 11
2.3 输电导线分析模型 14
2.4 动力特性分析原理 17
2.5 塔线体系动力响应非线性算法 17
2.6 ABAQUS有限元软件介绍 19
第三章 高耸钢结构塔架承载力计算 21
3.1 引言 21
3.2 输电塔概况 21
3.2.1 输电杆塔基本信息 21
3.2.2 输电杆塔有限元模型 22
3.3 输电塔线体系动力特性研究 23
3.3.1输电杆塔动力特性 23
3.3.2塔线体系动力特性 25
3.4风荷载模拟 28
3.5 风致响应分析 30
3.5.1 输电杆塔节点位移分析 30
3.5.2 输电杆塔单元轴应力响应分析 36
第四章 输电杆塔缩尺模型试验 40
4.1引言 40
4.2 相似理论 40
4.3 缩尺模型设计与制作 43
4.3.1 试验材料 43
4.3.2 缩尺比 44
4.3.3 原型塔与模型塔频率对比 45
4.3.4 试验模型制作 45
4.4 缩尺模型试验 46
4.4.1 试验步骤 46
4.4.2 试验结果分析 47
第五章 总结与展望 48
5.1 结论 48
5.2 展望 48
参考文献 49
致谢 51
摘要
现代的钢塔架起源于上世纪初,随着工业技术进步和无线电、电视事业的发展,其应用范围日益扩大。现代钢塔架的主要功能是:以钢塔架作为载体,将某种工艺装置举向高空;也可作为安装及施工的起重机结构。电力设施是重要生命线工程,它的安全性直接关系到国家的经济建设和人民的正常生活,因此,为了了解输电塔架在超过正常设计值的荷载作用下的力学特性,提高其抵御罕遇冰雪灾害和大风灾害的能力,对输电塔进行极限承载力和可靠性的研究应该得到越来越多的重视,其研究结果对保障电力设备的安全运作有着非常重要的意义。
本文首先对目标输电杆塔3号塔进行实体缩尺模型拼装,并通过静力试验加载荷载了解其破坏节点和现象,分析其破坏机理。
接着利用ABAQUS有限元软件建立输电塔线体系有限元模型以及输电杆塔杆件的局部坐标系和局部坐标系下的杆件质量矩阵和刚度矩阵,并分别进行动力特性分析。
最后建立的耐张输电塔线体系有限元模型的基础上,采用规范方法计算等效的台风静力荷载,同时采用实测台风数据模拟了台风风场得到耐张塔线体系节点风速时程曲线。分别采用静力、动力风荷载进行了耐张输电塔线体系的风致响应分析计算。提取了部分节点和杆件单元的数据后,对输电杆塔进行节点位移分析和单元轴应力响应分析,从而得到结论:输电杆塔的动力响应并不是很明显,而且输电杆塔结构破坏包含有较多的低频振动成分和高频振动成分。
关键词:输电杆塔;缩尺模型;静力实验;有限元建模;动力特性
Abstract
The modern steel tower originated from the beginning of the last century, with the development of industrial technology, radio and television business, the scale of its application is gradually increasing. The main functions of the modern steel tower frame are: A steel tower is used as a carrier to lift a certain process device to the upper air, It can also be used as a crane structure for installation and construction. Electric power facilities are important lifeline projects, and its safety is directly related to the economic construction of the country and the normal life of the people. Therefore, in order to understand the mechanical properties of transmission towers when the load exceeds normal design values and improve the tower’s ability to withstand rare disasters of snow and ice and strong winds. More attention should be paid to the study of ultimate bearing capacity and reliability of transmission towers, and the research results are of great significance to ensure the safe operation of power equipment.
In this paper, the scale model assembly of tower 3 is carried out first. Through the static load test, the damage nodes and phenomena are understood, and the failure mechanism is analyzed.
Secondly, the finite element model of transmission tower line system, the member's mass matrix, stiffness matrix in the local coordinate system, the local coordinate system of transmission pole and tower member is established by using ABAQUS finite element software. The dynamic characteristic analysis is carried out respectively.
Finally, based on the finite element model of the tension transmission tower line system, the equivalent static load of typhoon is calculated by the standard method. At the same time, typhoon wind field is used to get the wind speed time curve of the node of tension tower line system. The wind-induced response analysis of tension transmission tower line system is carried out by static and dynamic wind loads respectively. After extracting the data of some nodes and bar elements, the nodal displacement analysis and element stress response analysis of transmission towers are carried out. The conclusion is that the dynamic response of transmission towers is not very obvious. Moreover, the structural failure of transmission towers contains more low-frequency vibration components and high-frequency vibration components.
Key Words: Transmission tower; Scale model; Static experiment; Finite element modeling; Dynamic characteristics
第一章 绪论
1.1研究背景及意义
钢结构塔架是一种空间杆系结构,它具有规则的几何形状,是一种特种结构,它的特点:高度与横截面尺寸的比值较大很大,而且在水平方向上的荷载有着关键性作用。