基于遗传算法的图形着色问题研究任务书
2020-05-26 20:23:30
1. 毕业设计(论文)的内容和要求
内容: 利用遗传算法来实现图形的着色,讨论了图形着色的相关问题及其应用,利用可视化的方法展示图形着色,分析了标准遗传算法的算法思想,并利用它进行结合图形着色问题的具体实际,抽象出图的着色问题,实现依据遗传算法用java语言编写一个小型图形着色系统。
主要工作包括: ①遗传算法的研究,弄清楚遗传算法的基本流程,包括遗传编码、遗传算子、群体设定、初始化群体等。
②掌握图论的基本知识,理解图的顶点着色的概念。
2. 参考文献
[1] 孙惠泉.图论及其应用.北京:科学出版社,2004 [2] M. Mezard,G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiability problems. Science, 297(5582):812#8211;815, 2002. [3] 殷剑宏.吴开亚.图论及其算法. 合肥:中国科学技术大学出版社,2003.7 [4] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003. [5] 徐俊明.图论及其应用.合肥:中国科学技术大学出版社,2004.8 [6] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of distributed constraint satisfaction and optimization algorithms in sensor networks. In Proceedings of the 2nd Int. Joint Conference on Autonomous Agent and Multiagent Systems (AAMAS#8217;03),pages 185#8211;192, 2003. [7] 玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社,2004 [8] 张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000 [9] 李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用.北京:科学出版社,2002.03 [10] 王朝.图论.北京:北京理工大学出版社,2004.7 [11] 王树禾.图论.北京:科学出版社,2004 [12] 周明.遗传算法原理及应用.北京:国防工业出版社, 199914]Fleurent C, Ferland J A. Genetic and hybrid algorithms for graph coloring[J]. Annals of Operations Research, 1996, 63(3):437-461. [13] W. Y. and F. W.T. On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 47(2):723#8211;735, 2001. [14] (美) Gary Chartrand, Ping Zhang.图论导引.北京:人民邮电出版社,2007 [15]Marappan R, Sethumadhavan G. A New Genetic Algorithm for Graph Coloring[C]// Computational Intelligence, Modelling and Simulation (CIMSim), 2013 Fifth International Conference on. IEEE, 2013:49-54. [16]Douiri S M, Elbernoussi S. Solving the graph coloring problem via hybrid genetic algorithms[J]. Journal of King Saud University - Engineering Sciences, 2015, 27(1):114-118. [17]Chen B, Chen B, Liu H, et al. A Fast Parallel Genetic Algorithm for Graph Coloring Problem Based on CUDA[C]// Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2015 International Conference on. IEEE, 2015:145-148. [18]Monical C, Stonedahl F. Static vs. dynamic populations in genetic algorithms for coloring a dynamic graph[C]// Proceedings of the 2014 conference on Genetic and evolutionary computation. ACM, 2014:469-476.
3. 毕业设计(论文)进程安排
20160116-20160331 撰写开题报告 20160401-20160415 程序原型设计 20160416-20160430 各模块完善 20160501-20160515 系统测试 20160516-20160530 撰写论文 20160601 交论文初稿 20160605-20160612 修改论文 20160615 答辩