登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 理工学类 > 能源与环境系统工程 > 正文

水热制备豆粕基碳点实验与特性研究任务书

 2020-04-17 16:31:53  

1. 毕业设计(论文)的内容和要求

随着化石燃料危机的频频加剧,生物质能作为可再生能源在能源结构中占有越来越重要的地位。

不受物料含水率制约的水热碳化技术是实现实现高含水生物质高值化利用的转化技术之一, 其制备过程简单、反应条件温和、生物碳产量较高且官能团丰富可应用于纳米材料领域。

要求以豆粕作为前驱体通过水热碳化方法制备纳米碳点。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 孙润仓. 木质纤维生物质炼制和多级资源化利用#8212;#8212;生物质高值化的必由之路[J]. 生物产业技术,2017(03):1. [2] 赵海波. 废弃物与生物质高值化利用及污染物减排[J]. 国际学术动态,2015(04):20-21. [3] Sharma V, Tiwari P, Mobin S M. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. Royal Society of Chemistry, 2017,5:8904--8924 [4] The Y Y, Lee K T, Chen W, et al. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery[J]. Bioresource Technology, 2017,246(SI):20-27. [5] Lohri C R, Zabaleta I, Rohr M, et al. Improving the Energy-Related Aspects of Biowaste Treatment in an Experimental Hydrothermal Carbonization Reactor[J]. Waste and Biomass Valorization, 2018,9(3):429-442. [6] Xu Q, Qian Q, Quek A, et al. Hydrothermal Carbonization of Macroalgae and the Effects of Experimental Parameters on the Properties of Hydrochars[J]. Acs Sustainable Chemistry Engineering, 2013,1(9):1092-1101. [7] Jung A, Han S, Kim T, et al. Synthesis of high carbon content microspheres using 2-step microwave carbonization, and the influence of nitrogen doping on catalytic activity[J]. Carbon, 2013,60:307-316. [8] Wu K, Gao Y, Zhu G, et al. Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures[J]. Analytical and Applied Pyrolysis, 2017,127:335-342. [9] Liu R, Gao M P, Zhang J, et al. An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron(III) [J]. Royal Society of Chemistry, 2015, 5: 24205#8211;24209 [10] Liang Q, Wang Y L, Lin F C. A facile microwave-hydrothermal synthesis of #64258;uorescent carbon quantum dots from bamboo tar and their application. Royal Society of Chemistry, 2017, 9:3675#8211;3681 [11] Krustok J, Raadik T, Grossberg M, et al. Photoluminescence study of deep donor- deep acceptor pairs in Cu2ZnSnS4[J]. Materials Science in Semiconductor Processing, 2018, 80:52-55. [12] Zhao C, Sekhar M C, Lu W, et al. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.[J]. Nanotechnology,2018,29(24):245202. [13] Bao L, Zhang Z, Tian Z, et al. Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism [J]. Advanced Materials, 2011, 23(48): 5801. [14] Wang L, Zhu S, Wang H, et al. Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots[J]. Acs Nano, 2014,8(3):2541-2547. [15] Ananthanarayanan A, Wang X, Routh P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3 sensing [J]. Advanced Functional Materials, 2014, 24: 3021-3026. [16] Liu R L, Gao M P, Zhang J, et al. An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron(III) [J]. Rsc Adv., 2015, 5:24205#8211;24209 [17] Xu H, Li Q, Wang L, et al. Nanoscale optical probes for cellular imaging [J]. Chem Soc Rev, 2014, 10.1039/c3cs60309a. [18] Chen M, Yin M. Design and development of fluorescent nanostructures for bioimaging [J]. Progress in Polymer Science, 2014, 39: 365-395. [19] Tang J, Kong B, Wu H, et al. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging [J]. Adv Mater, 2013, 25: 6569-6574. [20] Sun Y, Cao W, Li S, et al. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy [J]. Sci Rep, 2013, 3: 3036. [21] Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots [J]. Acs Nano, 2013, 7: 5684-5693.

3. 毕业设计(论文)进程安排

第1-2周 针对本课题的研究背景、研究现状和发展方向进行综述,撰写本课题的调研报告; 第3-4周 学习实验相关设备的使用以及水热碳化制备碳点的具体实验方法; 第5#8212;6周 完成不同条件下制备豆粕基碳点的实验; 第7-10周 完成相关测试; 第11-12周 测试数据结果整理分析; 第13-15周 撰写毕业论文; 第16周 完善论文,准备答辩。

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图