基于卷积神经网络的人脸检测程序设计开题报告
2020-04-12 09:02:09
1. 研究目的与意义(文献综述)
在图像分类[1]、语音识别、自然语音等多个领域深度学习[2]都取得了巨大成功,而目前最热门的人脸识别[3]便是其中最为典型的应用案例。
人脸识别是通过人的面部信息进行身份确认的生物特征识别技术,细数起来已有数十年的研究历史。
一般来说,人脸识别系统由人脸检测、特征点定位、人脸识别等模块组成,其中面部识别主要包括这三种方式:几何结构、子空间局部特征以及深度学习。
2. 研究的基本内容与方案
基本内容及目标
本设计利用多任务卷积神经网络(multi-task convolutional neural networks, mtcnn)在图像与视频中检测人脸,包括:mtcnn模型包含的三个网络p-net,r-net,o-net的功能与结构,mtcnn模型构建与训练,利用导出模型设计人脸检测与人脸对齐算法。
拟采用的方案及措施
本设计系统开发平台是ubuntu系统,卷积神经网络的开发框架为caffe。
在此基础上综合运用所学的c 等编程知识完成系统的设计与实现工作。
3. 研究计划与安排
(1)第1周至第2周:查阅有关的参考资料并完成开题报告;翻译英文资料(不少于5000汉字),并交予指导教师检查。
(2)第3周至第10周:熟悉所选用的开发平台,运用所学的软件设计理论,完成整个系统的前期设计工作。
进行系统的编码、调试、集成、测试工作。
4. 参考文献(12篇以上)
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097-1105.
[2] [美]Ian Goodfellow,[加]Yoshua Bengio著;深度学习,人民邮电出版社,2017-08
[3] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification,” in Advances in Neural Information Processing Systems, 2014, pp. 1988-1996.
[4] P. Viola and M. J. Jones, “Robust real-time face detection. International journal of computer vision,” vol. 57, no. 2, pp. 137-154, 2004
[5] B. Yang, J. Yan, Z. Lei, and S. Z. Li, “Aggregate channel eatures for multi-view face detection,” in IEEE International Joint Conference on Biometrics, 2014, pp. 1-8.
[6] M. T. Pham, Y. Gao, V. D. D. Hoang, and T. J. Cham, “Fast polygonal integration and its application in extending haar-like features to improve object detection,” in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 942-949.
[7] Q. Zhu, M. C. Yeh, K. T. Cheng, and S. Avidan, “Fast human detection using a cascade of histograms of oriented gradients,” in IEEE Computer Conference on Computer Vision and Pattern Recognition, 2006, pp. 1491-1498.
[8] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, “Face detection without bells and whistles,” in European Conference on Computer Vision, 2014, pp. 720-735.
[9] J. Yan, Z. Lei, L. Wen, and S. Li, “The fastest deformable part model for object detection,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2497-2504.
[10] X. Zhu, and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2879-2886.
[11] S. Yang, P. Luo, C. C. Loy, and X. Tang, “From facial parts responses to face detection: A deep learning approach,” in IEEE International Conference on Computer Vision, 2015, pp. 3676-3684.
[12] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural network cascade for face detection,” in IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5325-5334
[13] X. P. Burgos-Artizzu, P. Perona, and P. Dollar, “Robust face landmark estimation under occlusion,” in IEEE International Conference on Computer Vision, 2013, pp. 1513-1520.
[14] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regression,” International Journal of Computer Vision, vol 107, no. 2, pp.177-190, 2012.
[15] J. Zhang, S. Shan, M. Kan, and X. Chen, “Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment,” in European Conference on Computer Vision, 2014, pp. 1-16.
[16] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, 2001.
[17] X. Yu, J. Huang, S. Zhang, W. Yan, and D. Metaxas, “Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model,” in IEEE International Conference on Computer Vision, 2013, pp. 1944-1951.
[18] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by deep multi-task learning,” in European Conference on Computer Vision, 2014, pp. 94-108.
[19] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun, “Joint cascade face detection and alignment,” in European Conference on Computer Vision, 2014, pp.109-122.
[20] C. Zhang, and Z. Zhang, “Improving multiview face detection with multi-task deep convolutional neural networks,” IEEE Winter Conference on Applications of Computer Vision, 2014, pp. 1036-1041.
[21] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Yu Qiao. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. IEEE Signal Processing Letters, Volume: 23, Issue: 10, Oct. 2016