贵金属/g-C3N4复合材料光催化性能研究任务书
2020-04-24 11:28:51
1. 毕业设计(论文)的内容和要求
内容基本要求:1. 概念准确,层次清楚,内容正确,格式规范。
2. 字体工整,字迹清楚,行文流畅,无错别字。
3. 有关于课题的条件、技术、经济等方面的可行性分析。
2. 参考文献
(1) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37#8722;38. (2) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carlsson, J. M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-free Catalysts. J. Mater. Chem. 2008, 18, 4893#8722;4908. (3) Ozawa, H.; Sakai, K. Photo-hydrogen-evolving Molecular Devices Driving Visible-light-induced Water Reduction into Molecular Hydrogen: Structure-activity Relationship and Reaction Mechanism. Chem. Commun. 2011, 47, 2227#8722;2242. (4) Zhu, M.; Chen, P.; Liu, M. Graphene Oxide Enwrapped Ag/AgX (X = Br, Cl) Nanocomposite as a Highly Efficient Visible-light Plasmonic Photocatalyst. ACS Nano 2011, 5, 4529#8722;4536. (5) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446#8722;6473. (6) Tylianakis, E.; Dimitrakakis, G. K.; Melchor, S.; Dobado, J. A.; Froudakis, G. E. Porous Nanotube Network: A Novel 3-D Nanostructured Material with Enhanced Hydrogen Storage Capacity. Chem. Commun. 2011, 47, 2303#8722;2305. (7) Wang, W.; Chen, J.; Li, C.; Tian, W. Achieving Solar Overall Water Splitting with Hybrid Photosystems of Photosystem II and Artificial Photocatalysts. Nat. Commun. 2014, 5, 4647. (21) Liu, Y.; Zhou, W.; Liang, Y.; Cui, W.; Wu, P. Tailoring Band Structure of TiO2 to Enhance Photoelectrochemical Activity by Codoping S and Mg. J. Phys. Chem. C 2015, 119, 11557#8722;11562. (8) Yang, N.; Li, G. Q.; Wang, W. L.; Yang, X. L.; Zhang, W. F. Photophysical and Enhanced Daylight Photocatalytic Properties of Ndoped TiO2/g-C3N4 Composites. J. Phys. Chem. Solids 2011, 72, 1319#8722;1324. (9) Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO. Angew. Chem., Int. Ed. 2008, 47, 9730#8722;9733. (10) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-electron Conversion Efficiencies. Nature 1998, 395, 583#8722;585. (11) Tada, H.; Kiyonaga, T.; Naya, S.-i. Rational Design and Applications of Highly Efficient Reaction Systems Photocatalyzed by Noble Metal Nanoparticle-loaded Titanium(IV) Dioxide. Chem. Soc. Rev. 2009, 38, 1849#8722;1858. (12) Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. Chem. Mater. 2001, 13, 2838#8722;2842. (13) Zhang Y, Mori T, Niu L et al. Energ Environ Sci[J], 2011, 4: 4517 (14) Xu Hui, Yan Jia, Xu Yuanguo et al. Appl Catal B: Environ[J], 2013, 129: 182 (15) Kumar S, Surendar T, Baruah A et al. J Mater Chem A[J], 2013, 1: 5333 (16) Wang, H.; Bai, Y. S.; Wu, Q. O.; Zhou, W.; Zhang, H.; Li, J. H.; Guo, L. Rutile TiO2 Nano-branched Arrays on FTO for Dye-sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 7008#8722;7013. (17) Hosono, E.; Fujihara, S.; Imai, H.; Honma, I.; Masaki, I.; Zhou, H. One-Step Synthesis of Nano-Micro Chestnut TiO2 with Rutile Nanopins on the Microanatase Octahedron. ACS Nano 2007, 1, 273#8722; 278. (18) Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 Nanotubes and Their Application in Dye-sensitized Solar Cells. Nanoscale 2010, 2, 45#8722;59. (19) Ge, L.; Han, C.; Xiao, X.; Guo, L. In Situ Synthesis of Cobaltphosphate (Co-Pi) Modified g-C3N4 Photocatalysts with Enhanced Photocatalytic Activities. Appl. Catal., B 2013, 142#8722;143, 414#8722;422. (20) Li, Y.; Wei, X.; Li, H.; Wang, R.; Feng, J.; Yun, H.; Zhou, A. Fabrication of Inorganic-organic Core-shell Heterostructure: Novel CdS@g-C3N4 Nanorod Arrays for Photoelectrochemical Hydrogen Evolution. RSC Adv. 2015, 5, 14074#8722;14080. (21) Woo, K.; Lee, H. J.; Ahn, J. P.; Park, Y. S. Sol-gel Mediated Synthesis of Fe2O3 Nanorods. Adv. Mater. 2003, 15, 1761#8722;1766. (22) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Andreeva, D.; Tabakova, T. FTIR Study of the Low-Temperature Water-Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts. J. Catal. 1999, 188, 176#8722;185. (23) Ng, J.; Wang, X.; Sun, D. D. One-pot Hydrothermal Synthesis of a Hierarchical Nanofungus-like Anatase TiO2 Thin Film for Photocatalytic Oxidation of Bisphenol A. Appl. Catal., B 2011, 110, 260#8722;272.
3. 毕业设计(论文)进程安排
2月25日至3月10日,了解相关文献以及完成翻译工作。
3月10日至3月31日,制备样品。
4月1日至5月20日,研究优化样品结构和性能测试。
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料