中空纤维TiO2介孔陶瓷膜的制备与表征任务书
2020-06-26 19:50:13
1. 毕业设计(论文)的内容和要求
内容:通过在TiO2膜材料中掺杂不同的抗菌材料,进行抗菌效果的分析对比,选择出所用材料中抗菌效果最优异的一种,用其制膜并进行表征。
要求:(1)熟练掌握抗菌材料抗菌效果的检测方法;(2)熟练掌握TiO2陶瓷膜的制备方法;(3)熟练掌握TiO2膜的表征方法。
2. 参考文献
[1] D. Li, W. Jing , S. Li, H. Shen, W. Xing. Electric Field-Controlled Ion Transport In TiO2 Nanochannel, ACS Appl. Mater. Inter. 7 (2015) 11294-11300. [2] X. Cao, W. Jing, W. Xing, Y. Fan, Y. Kong, J. Dong. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process, Chem Commun (Camb). 47 (2011) 3457-3459. [3] W. Jing, W. Huang, W. Xing, Y. Wang, W. Jin, Y. Fan. Fabrication of Supported Mesoporous TiO2 Membranes: Matching the Assembled and Interparticle Pores for an Improved Ultrafiltration Performance, ACS Appl. Mater. Inter. 1 (2009) 1607-1612. [4] Z. Dong, W. Jing, W. Xing. Triblock polymer template assisted sol-gel process for fabrication of multi-channel TiO2/ZrO2 ultrafiltration membrane, J. Membr. Sci. 373 (2011) 167-172. [5] D. Zou, M. Qiu, X. Chen, Y. Fan, One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sinterin, J. Membr. Sci. 524 (2017) 141-150. [6] D. Li, H. Wang, W. Jing, Y. Fan, W. Xing. Fabrication of mesoporous TiO2 membranes by a nanoparticle-modified polymeric sol process, J. Colloid Interface Sci. 433 (2014) 43-48. [7] Y. Cai, Y. Wang, X. Chen, M. Qiu, Y. Fan. Modified colloidal sol-gel process for fabrication of titania nanofiltration membranes with organic additives, J. Membr. Sci. 476 (2015) 432-441 [8] Y. Yin, H. Wang, D. Li, W. Jing, Y. Fan, W. Xing. Fabrication of mesoporous titania-zirconia composite membranes based on nanoparticles improved hydrosol, J. Colloid Interface Sci. 478 (2016) 136-144. [9] K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution, Angewandte Chemie International Edition. 53 (2014) 6929-6932. [10] J. Shen, G. Liu, K. Huang, W. Jin, K. Lee, N. Xu. Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture, Angew. Chem., Int. Ed. 54 (2014) 578-582. [11] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes, Science. 343 (2014) 752-754. [12] Y.L.Y.B. Y. Peng. Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science. 346 (2014) 1135-1356. [13] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane, Science. 334 (2011) 72-75. [14] G. Liu, W. Jin, N. Xu, Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes, Angew. Chem., Int. Ed. 55 (2016) 13384-13397 [15]M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum. Two-Dimensional Transition Metal Carbides. ACS NANO. 6 (2012) 1322-1331. [16] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. [17] O.M.C.E. M. R. Lukatskaya. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide, Science. 341 (2013) 1502-1505. [18] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. [19] T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao. Phosphorus-Doped Graphitic Carbon Nitrides Grown In Situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes, Angew. Chem., Int. Ed. 54 (2015) 4646-4650. [20] Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng. Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium(VI) from Water, ACS Appl. Mater. Inter. 7 (2015) 1795-1803. [21] Y.T.C.Y. JianFeng Zhu. Composites of TiO2 Nanoparticles Deposited on Ti3C2 MXene Nanosheets with Enhanced Electrochemical Performance, J. Electrochem. Soc. 163 (2016) A785-A791.
3. 毕业设计(论文)进程安排
2018.2-2018.3查阅文献,了解课题研究意义及国内外研究进展; 2018.3-2018.4制备掺杂不同抗菌材料的TiO2分散液并进行抗菌效果测试; 2018.4-2018.5选择抗菌效果最好的材料制膜并进行分析表征; 2018.5-2018.6撰写论文并修改、定稿。
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料