三元体系H2O/CH4/CO2在碳纳米管中水的行为及其影响的分子模拟研究任务书
2020-06-25 20:44:50
1. 毕业设计(论文)的内容和要求
#25484;#25569;#19968;#20123;#19982;#20998;#23376;#27169;#25311;#30456;#20851;#30340;#29702;#35770;#30693;#35782;#65307; #23545;#22522;#20110;#22810;#23380;#26448;#26009;#21560;#38468;#20998;#31163;CO2/CH4#30340;#20998;#23376;#27169;#25311;#30740;#31350;#30456;#20851;#30340;#35838;#39064;#25991;#29486;#26816;#32034;#35201;#21040;#20301;#65292;#20102;#35299;#27700;#22312;#22810;#23380;#26448;#26009;#20013;#30340;#22242;#31751;#34892;#20026;#20197;#21450;#23545;CO2/CH4#20998;#31163;#24615;#33021;#30340;#24433;#21709;#65292;#25484;#25569;#35813;#35838;#39064;#30340;#30456;#20851;#30693;#35782;#65307; #23545;#20998;#23376;#27169;#25311;#30340;Monte Carlo#26041;#27861;#21644;Music#36719;#20214;#26377;#19968;#23450;#30340;#20102;#35299;#65307; #21400;#28165;#20998;#23376;#21560;#38468;#37327;#12289;#21560;#38468;#36873;#25321;#24615;#21644;#21560;#38468;#20998;#31163;#24615;#33021;#20043;#38388;#30340;#20851;#31995;#12290;
2. 参考文献
[1] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes [J]. Science, 2012, 335(6067): 442-4. [2] Mashl R J, Joseph S, Aluru N R, et al. Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes [J]. Nano letters, 2003, 3(5): 589-92. [3] Falk K, Sedlmeier F, Joly L, et al. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction [J]. Nano letters, 2010, 10(10): 4067-73. [4] Singla S, Anim-Danso E, Islam A E, et al. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy [J]. ACS Nano, 2017. [5] Verdaguer A, Sacha G M, Bluhm H, et al. Molecular structure of water at interfaces: wetting at the nanometer scale [J]. Chem Rev, 2006, 106(4): 1478-510. [6] Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene [J]. Nano letters, 2012, 12(7): 3602-8. [7] Yazayd齨 AO, Benin AI, Faheem SA, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules [J]. Chemistry of Materials, 2009, 21(8): 1425-1430. [8] Rossi M P, Ye H, Gogotsi Y, et al. Environmental Scanning Electron Microscopy Study of Water in Carbon Nanopipes [J]. Nano letters, 2004, 4(5): 989-93. [9] Liu L, Nicholson D, Bhatia SK. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study [J]. Chemical Engineering Science, 2015, 121: 268-278. [10] Joseph S, Aluru N R. Why are carbon nanotubes fast transporters of water? [J]. Nano letters, 2008, 8(2): 452-8. [11] Wei M-J, Zhou J, Lu X, et al. Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001) [J]. Fluid Phase Equilibria, 2011, 302(1-2): 316-20. [12] Zhang Y, Zhu Y, Li Z, et al. Temperature-dependent structural properties of water molecules confined in TiO2 nanoslits: Insights from molecular dynamics simulations [J]. Fluid Phase Equilibria, 2016, 430(169-77. [13] Huang LL, Zhang LZ, Shao Q, et al. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes [J]. Journal of Physical Chemistry B, 2006, 110(11): 25761-25768. [14] Liu L, Nicholson D, Bhatia S K. Impact of H2O on CO2 Separation from Natural Gas: Comparison of Carbon Nanotubes and Disordered Carbon[J]. Journal of Physical Chemistry C, 2015, 119(1):407-419. [15] Dalla Bernardina S, Paineau E, Brubach J B, et al. Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy [J]. Journal of the American Chemical Society, 2016, 138(33): 10437-43.
3. 毕业设计(论文)进程安排
2018.1.8~2.4 #26816;#32034;#22269;#20869;#22806;#26377;#20851;#25991;#29486;#65292;#24182;#36827;#34892;#25991;#29486;#32508;#36848;#25972;#29702;#65292;#32763;#35793;#33521;#25991;#25991;#29486;#65307; 2018.2.5~2018.3.11 #30830;#23450;#30740;#31350;#24605;#36335;#65292;#25776;#20889;#24320;#39064;#25253;#21578;#65307; 2018.3.12~3.18 #23436;#25104;#23545;#19981;#21516;#21547;#27700;#37327;#19979;CO2/CH4#22312;#30899;#32435;#31859;#31649;#20013;#30340;MC#27169;#25311;#35745;#31639;#65292;#24471;#20986;CO2/CH4#30340;#21560;#38468;#37327;#21644;#36873;#25321;#24615;#65292;#30740;#31350;#21547;#27700;#37327;#23545;CO2/CH4#21560;#38468;#20998;#31163;#24615;#33021;#30340;#24433;#21709;#65292;#24182;#25776;#20889;#27605;#19994;#35770;#25991;#32490;#35770;#37096;#20998;#65307; 2018.3.19~3.25 #20013;#26399;#26816;#26597;#36164;#26009;#30340;#20934;#22791;#65307; 2018.3.26~5.31#23436;#25104;#23545;#19981;#21516;#21387;#21147;#12289;#28201;#24230;#12289;#30899;#31649;#31649;#24452;#19979;H2O/CO2/CH4#19977;#20803;#20307;#31995;#22312;#30899;#32435;#31859;#31649;#20013;#30340;MC#27169;#25311;#35745;#31639;#65292;#35266;#23519;#19981;#21516;#28201;#24230;#12289;#21387;#21147;#12289;#30899;#31649;#31649;#24452;#19979;#27700;#20998;#23376;#30340;#22242;#31751;#34892;#20026;#65292;#20998;#21035;#30740;#31350;#27700;#22312;#19981;#21516;#28201;#24230;#12289;#21387;#21147;#12289;#30899;#31649;#31649;#24452;#19979;#23545;CO2/CH4#21560;#38468;#20998;#31163;#24615;#33021;#30340;#24433;#21709;#65292;#24182;#25776;#20889;#27605;#19994;#35770;#25991;#65307; 2017.6.1~6.10 #23436;#25104;#35770;#25991;#65292;#20934;#22791;#31572;#36777;#12290;
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料