调控钙钛矿氧化物作为高效的电解水催化剂任务书
2020-06-24 19:46:36
1. 毕业设计(论文)的内容和要求
1. 学会采用各种文献检索手段对特定课题进行检索的方法,培养阅读中外文献资料的能力。
2. 培养综合运用所学专业知识分析、解决实际问题的能力。
3.培养独立开展实验研究、独立思考和分析问题与现象,并解决问题,完成课题的工作能力。
2. 参考文献
[1] 祁万年. 我国新能源发电制氢储能技术研究 [J]. 科技创新导报, 2012, (27): 38-40. [2] 穆亚玲, 王香爱. 氢能源研究现状. 化工时刊, 2008, 22(10): 64-65. [3] M W Kanan, D G Nocera. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2 [J]. Science, 2008, 321(5892): 1072-1075. [4] K Zeng, D Zhang. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications [J]. Prog Energy Combust Sci, 2001, 36(3): 307-326. [5] N Armaroli, V Balzani. The Hydrogen Issue [J]. ChemSusChem, 2011, 4(1): 21~36. [6] M D Symes, L Cronin. Decoupling Hydrogen and Oxygen Evolution During Electrolytic Water Splitting Using an Electron-Coupled-Proton Buffer [J]. Nature Chem, 2013, 5(5): 403-409. [7] Yang Z, Zhang J, M.C.W.Kintner-Meyer, et al. Electrochemical Energy Storage for Green Grid [J]. Chemical Review, 2011, 111: 3577-3613. [8] Risch M, Stoerzinger K A, Maruyama S, et al. La0.8Sr0.2MnO3#8722;δ Decorated with Ba0.5Sr0.5Co0.8Fe0.2O3#8722; δ: A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity [J]. Journal of the American Chemical Society, 2014, 136: 5229-5232. [9] Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped Carbon Nanomaterials as Non-metal Electrocatalysts for Water Oxidation [J]. Nature Communications, 2013, 1: 4-4. [10] J Wang, W Cui, Q Liu, et al. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting [J]. Adv Mater, 2016, 28(2): 215-230. [11] Y Lee, J Suntivich, K J May, et al. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions [J]. J Phys Chem Lett, 2012, 3(3): 399~404. [12] N Krstajic, S Trasatti. Cathodic Behavior of RuO2-Doped Ni/Co3O4 Electrodes in Alkaline Solutions: hydrogen evolution [J]. J Appl Electrochem, 1998, 28(12): 2675~2681. [13] M Tsionsky, O Lev. Investigation of the Kinetics and Mechanism of Co-Porphyrin Catalyzed Oxygen Reduction by Hydrophobic Carbon-Ceramic Electrodes [J]. J Electrochem Soc, 1995, 142(7): 2132~2138. [14] N Heller-ling, M Prestat, J L Gautier, et al. Oxygen Electroreduction Mechanism at Thin NixCo3-xO4 Spinel Films in a Double Channel Electrode Flow Cell (DCEFC) [J]. Electrochim Acta, 1997, 42(2): 197~202. [15] J Prakash, D A Tryk, E B Yeager. Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts [J]. J Electrochem Soc, 1999, 146(11): 4145~4151. [16] K Suresh, T S Panchapagesan, K C Patil. Synthesis and Properties of La1-xSrxFeO3 [J]. Solid State Ionics, 1999, 126(3): 299~305. [17] E Fabbri, A Habereder, K Waltar, et al. Developments and Perspectives of Oxide-Based Catalysts for the Oxygen Evolution Reaction [J]. Catal Sci Technol, 2014, 4(11): 3800~3821. [18] R H E Van Doorn, A J Burggraaf. Structural Aspects of the Ionic Conductivity of La1-xSrxCoO3-δ [J]. Solid State Ionics, 2000, 128(1): 65~78. [19] Rossmeisl J, Logadottir A, Norskov J K. Electrolysis of Water on (Oxidized) Metal Surfaces [J]. Chemical Physics, 2005, 319: 178-184. [20] Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of Water on Oxide Surfaces [J]. Journal of Electroanalytical Chemistry, 2007, 607: 83-89. [21] Hansen H A, Man I C, Studt F, et al. Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces [J]. Physical Chemistry Chemical Physics, 2010, 12: 283-290. [22] Man I C, Su H, Federico C, et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces [J]. ChemCatChem, 2011, 3: 1159-1165. [23] Dau H, Limberg C, Reier T, et al. The Mechanism of Water Oxidation:from Electrolysis via Homogeneous to Biological Catalysis [J]. ChemCatChem, 2010, 2: 724-761. [24] Jin S, May K J, Gasteiger H A, et al. ChemInform Abstract: A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles [J]. Science, 2011, 334: 1383-1385. [25] 黄庆华,李振亚,王为. 电池用氧电极催化剂的研究现状 [J]. 电源技术,2003,27。
[26] Y Nishihata, J Mizuki, T Akao, ed al. Self-Regeneration of a Pd-Perovskite Catalyst for Automotive Emissions Control [J]. Nature, 2002, 418(6894): 164-167. [27] Z P Shao, W S Yang, Y Cong, ed al. Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ Oxygen Membrane [J]. J Membr Sci, 2000, 172(1-2): 177-188. [28] Z P Shao, S M Haile A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells [J]. Nature, 2004, 431(7005): 170-173. [29] J Suntivich, H A Gasteiger, N Yabuuchi, et al. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries [J]. Nature Chem, 2011, 3(7): 546-550. [30] J B Goodenough, R Manoharan, M Paranthaman. Surface Protonation and Electrochemical Activity of Oxides in Aqueous-Solution [J]. J Am Chem Soc, 1990, 112(6): 2076-2082. [31] J. Bockris, T. Otagawa, J. Phy. Chem. 1983, 87, 2960. [32] J. O. M. Bockris, J. Electrochem. Soc. 1984, 131, 290. [33] J. I. Jung, H. Y. Jeong, J. S. Lee, M. G. Kim, J. Cho, Angew. Chem. 2014, 53, 4582. [34] J. Kim, X. Yin, K. C. Tsao, S. Fang, H. Yang, J. Am. Chem. Soc. 2014, 136, 14646. [35] Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao, Y. Lin, W. Chu, Z. Peng, C. Wu, Y. Xie, Adv Mater 2015, 27, 5989. [36] Y. Zhu, W. Zhou, Z. G. Chen, Y. Chen, C. Su, M. O. Tade, Z. Shao, Angew. Chem. 2015, 54, 3897. [37] S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama, S. Mori, Nat. Commun. 2015, 6, 8249. [38] X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. El Kazzi, R. Haumont, N. Marzari, T. J. Schmidt, Chem. Mat. 2015, 27, 7662. [39] Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu, Z. Shao, Chem. Mat. 2016, 28, 1691. [40] D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, J. B. Goodenough, J. Mater. Chem. A 2015, 3, 9421. [41] W. Zhou, M. Zhao, F. Liang, S. C. Smith, Z. Zhu, Mater. Horiz. 2015, 2, 495. [42] S. Malkhandi, P. Trinh, A. K. Manohar, A. Manivannan, M. Balasubramanian, G. K. S. Prakash, S. R. Narayanan, J. Phys. Chem. C 2015, 119, 8004. [43] Y. Yang, W. Zhou, R. Liu, M. Li, T. E. Rufford, Z. Zhu, ChemElectroChem 2015, 2, 200. [44] Y. Wang, J. Ren, Y. Wang, F. Zhang, X. Liu, Y. Guo, G, Lu, J. Phys. Chem. C 2008, 112, 15293. [45] Z P Shao, W Zhou, Z H Zhu. Advanced Synthesis of Materials for Intermediate-Temperature Solid Oxide Fuel Cells [J]. Prog Mater Sci, 2012, 57(4): 804~874. [46] W Zhou, Z P Shao, W Q Jin. Synthesis of Nanocrystalline Conducting Composite Oxides Based on a Non-ion Selective Combined Complexing Process for Functional Applications [J]. J Alloys Compd, 2006, 426(1): 368~374.
3. 毕业设计(论文)进程安排
1.1-2周:确定毕业论文选题,拟订论文开题报告书;撰写论文大纲,并根据相关主题进行文献的收集和分析; 2.3-5周:熟悉实验室的仪器设备,掌握基本的制备过程#8212;#8212;催化剂的合成、电极的制备。
3.5-7周:采用xrd、sem、bet、tem等对粉体进行表征,测试催化剂的各种基本性质。
4.8-1-0周:进行电解水性能 5.11-13周:分析整理数 5.14-17周:撰写毕业论文,准备答辩。
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料