表面等离激元近场显微研究任务书
2020-04-26 12:49:35
1. 毕业设计(论文)的内容和要求
表面等离激元(spp),作为介质与金属界面电子集体谐振,与电磁波之间互相耦合形成一种极化波,被局域在金属和空气界面中传播,它的强度随着离开界面的距离而指数衰减。
表面等离激元由于其波长比起真空中自由波束的波长短(亚波长),局域性强的特点,为下一代的光子集成技术提供新的灵感,吸引了人们对他的广泛的关注和研究的热情。
表面等离激元的场分布在金属和介质中都呈现指数形式衰减,因而在界面上是场强最强的地方,表现出能量的高度局域性,可以有效的增加光和物质的相互作用。
2. 参考文献
[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, ”Surface plasmon subwavelength optics,” Nature 424, 824#8211;830 (2003). [2] P. Mulvaney, ”Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788#8211;800 (1996). [3] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, ”Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667#8211;669 (1998). [4] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Berlin, 2007). [5] R. W. Wood, ”On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proceedings of the Physical Society 18, 269#8211;275 (1902). [6] U. Fano, ”The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (sommerfeld#8217; s waves),” Journal of the Optical Society of America 31, 213#8211;222 (1941). [7] R. H. Ritchie, ”Plasma losses by fast electrons in thin films,” Physical Review D 106, 874#8211;881 (1957). [8] R. A. Ferrell, ”Predicted radiation of plasma oscillations in metal films,” . [9] R. O. Ritchie, E. T. Arakawa, J. J. Cowan, and R. Hamm, ”Surface-plasmon resonance effect in grating diffraction,” Physical Review Letters 21, 1530#8211;1533 (1968). [10] E. Kretschmann and H. Raether, ”Notizen: Radiative decay of non radiative surface plasmons excited by light,” Zeitschrift f#252;r Naturforschung A 23, 2135#8211; 2136 (1968). [11] T. Li, H. Liu, S. Wang, X. Yin, F. Wang, S. Zhu, and X. Zhang, ”Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Applied Physics Letters 93, 021110 (2008). [12] T. Li, J. Li, F. Wang, Q. Wang, H. Liu, S. Zhu, and Y. Zhu, ”Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Applied Physics Letters 90, 251112 (2007). [13] M. L. Brongersma and V. M. Shalaev, ”The case for plasmonics,” Science 328, 440#8211;441 (2010). [14] S. I. Bozhevolnyi, Plasmonic nanoguides and circuits (Pan Stanford, 2008) [15]J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, ”Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Physical Review B 64 (2001). [16] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, ”Twodimensional optics with surface plasmon polaritons,” Applied Physics Letters 81, 1762#8211;1764 (2002). [17] A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, ”Surface plasmon leakage radiation microscopy at the diffraction limit,” Optics Express 19, 25749#8211;25762 (2011). [18] J. Wang, C. Zhao, and J. Zhang, ”Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons,” Optics Letters 35, 1944#8211;1946 (2010).
3. 毕业设计(论文)进程安排
第一个月,调研文献,初步认识成像光路原理。
第二-四个月,进实验室搭建近场显微光路。
第五个月,加工金属样品,完成等离激元成像效果的验证。