W型减反膜极小值波长的Matlab编程计算毕业论文
2021-09-19 19:38:28
摘 要
Abstract II
第1章 绪论 1
1.1 目的及意义 1
1.2 主要内容 1
第2章 薄膜基本理论 3
2.1 减反膜介绍 3
2.1.1 单层减反膜 3
2.1.2 W型减反膜 3
2.1.3 多层减反膜 4
2.2 矩阵法 4
第3章 减反膜极小值波长公式推导 8
3.1 W型减反膜的理论公式 8
3.2 极小值波长的推导 8
3.2.1 反射率公式的求导 8
3.2.2 薄膜特征矩阵的变换 9
第4章 极小值波长的Matlab编程 11
4.1 Matlab编程分析 11
4.1.1 Matlab介绍 11
4.1.2 编程分析 11
4.2 编程结果及分析 13
4.2.1 入射角θ 14
4.2.2 薄膜折射率n1 16
4.2.3 薄膜折射率n2(垂直入射) 17
4.2.3 薄膜折射率n2(斜入射) 19
第5章 结论 21
5.1 总结 21
5.2 不足及展望 22
参考文献 23
附 录 24
致 谢 29
摘 要
本文借助计算公式推导与数学软件Matlab对W型减反膜的极小值波长进行了编程计算,通过改变薄膜折射率、入射角度等不同参数模拟出不同情况的薄膜功能特性的比较,所得结果对于现有减反膜的设计指标改良具有重要的借鉴意义。
论文主要研究了如何利用Matlab编程来求W型减反膜的极小值波长,并将所得结果的图形与理论结果相比较验证,通过改变参数使极小值波长区间达到最大,从而达到改良薄膜特性的目的。
研究结果表明:可以通过编程来得出与理论符合的准确极小值波长,在图上可以观察得出改变入射角与薄膜层数后的极小值波长区间,有望实现减反膜设计指标的改良。
本文的特色在于:从薄膜的特征矩阵理论进行计算,借助编程模拟与实际来解决问题,从而达到研究目的。
关键词:薄膜光学;减反膜;极小值波长;Matlab
Abstract
With the help of calculation formula derivation and mathematical software Matlab , the minimum wavelength of W type anti-reflection coating is calculated by programming. The comparison of the functional properties of the coatings was carried out by simulating the different conditions by changing the incidence angle and different parameters. The results have important guiding significance for the improvement of the design parameters of the existing anti-reflection coatings.
This paper mainly studies how to use Matlab programming to calculate the minimum wavelength of the W type anti-reflection coating, verify the conclusion from theory with graphical result ,through changing the parameter to maximize minimum wavelength interval ,to reach the purpose of improving coating properties.
Research study shows: It is possible to conduct the accurate minimum wavelength in theory by programming , the minimum wavelength interval between changed incidence angles and coating layer can be seen through graphic, possibly get the improvement index of anti-reflection coating.
The core points of this article : To get the effective research by both calculating based on the coating attribute and matrix in theory and simulating programming angle with real practice to tackle with problem.
Key Words:Thin film optics;Anti-reflection coating; Minimum wavelength;Matlab
第1章 绪论
对于薄膜光学来说,在现今所有的光学薄膜中,减反膜的发现具有非常重要的意义。它直接促进了薄膜光学技术的飞速发展。直到现今,减反膜依然在生产实践中极其重要,其生产量仍然远超其它所有薄膜。因此,对减反膜的设计制备技术研究,依然还在坚持不懈的进行中,并且意义重大。
1.1 目的及意义
现在为满足技术光学领域的迫切需求,越来越多不同类型的减反膜被研发出来供利用。但较为复杂的光学系统往往对减反膜的性能有着不一样的特殊要求。比如大功率的激光系统,为避免部分较为灵敏的元件受到不必要的反射破坏,因此某些元件被要求具有极低的表面反射。因此,由于生产实际的需要等方面,减反膜在不断发展着。
单层减反膜的使用,是薄膜光学上一个重要发展。虽然现今已经被发现具有缺陷,但仍然被用来满足一些简单的用途。它的两个重大缺陷一是对于现如今大多数元件来说已经过高的剩余反射,二是相比于在色彩上仍保持中性的从未镀膜表面反射的光线,从镀膜表面反射的光线色彩平衡已经被破坏[1]。对于这样的明显缺陷,目前有两个途径可以试图解决,一是采用非均匀膜,即变折射率薄膜,二是采用几种折射率不同的均匀膜构成减反膜。
相比于上述具有明显缺陷的单层减反膜,双层膜的特性要明显优于它。虽然在很多应用例子里,一个理想的双层膜还是会形成不适宜的光谱带宽度或者过大的反射率。在双层膜的基础上,很多多层减反膜可以看作是W型膜和V型膜的改进,由四分之一波长层或半波长层构成。通过改变各个薄膜参数,使反射率极小值移到不同位置上、改变低反射光谱的宽度以及反射率和使反射率曲线作相对垂直运动,从而改良薄膜性能。
因此,本课题研究λ/4—λ/2结构的减反射膜的光谱特性,利用矩阵分析理论结合Matlab语言来讨论λ/4—λ/2结构的减反射膜的光谱特性里两个极小值的位置及其具体数值,通过改变薄膜厚度来改变其极小值位置对应的反射率与低反射光谱的宽度,从而对现今实际应用的λ/4—λ/2结构的减反射膜设计提出有效的改进意见,以减小薄膜应用的损失与缺陷,更好的应用到生产实践中去。
1.2 主要内容
论文的基本内容是根据λ/4—λ/2结构的减反射膜的光谱特性具有W型的特征,存在着两个极小值的原理,利用矩阵分析理论结合Matlab语言来讨论这两个极小值的具体数值及其对应的波长位置,力争对现今实际应用的λ/4—λ/2结构的减反射膜设计提出一种新的有效的衡量指标。