PID温度控制系统设计文献综述
2020-04-30 16:13:10
研究目的及意义
在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温度有着密切的联系,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。在传统的温度控制系统中,对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而对温度的控制方法多种多样。因此我们需要一个更加简单、高效、稳定、适用性好的控制系统。
基于当前经济结构的转型和过程控制的智能化的要求,智能化的控制系统越来越受到人们的亲睐,它在节省人力和物力的同时又安全可靠。单片机作为可编程的控制器在小型的自动控制系统和检测中发挥出越来越来大的作用。温度作为系统经常需要测量、保持、和控制的一个量,在化工、冶炼、电力,以至于日常生活中的空调机和电压力锅等,都需要对温度进行检测和控制。但生产过程中经常遇到的温度控制系统具有大的滞后性,单纯采用PID算法校正的温度控制系统具有高频扰动大、调整时间长、PID参数整定困难、有较大超调量等弊端。但以单片机为核心的温度控制系统,设计成一个简单实用的温度控制系统。该系统具有控制参数整定方便、控制精度高、稳定性好、结构简单、价格低廉等优点。克服了传统控制的系统复杂、精度小、成本大的缺点。适于普遍性生产和应用,对人们的生活和生产效力的提高有很大作用。
本设计基于单片机系统的温度传感及温度过程控制研究,是对温度控制一个很好的学习和提升自身的知识水平的机会,反过来运用自己的知识为温度控制的发展做点贡献,为人类工业生产提供更加智能、更加便捷的环境。
国内外现状及发展趋势
从20世纪50年代开始,温度控制界逐渐发展了串级控制、前馈控制、史密斯预估控制、比值控制、选择性控制和多变量解耦控制等策略与算法,称为复杂控制。他们在很大程度上满足了复杂过程工业的一些特殊控制要求。他们仍然以经典控制理论为基础,但是结构与应用上各有特色,而且目前仍在继续改进与发展。
从20世纪80年代开始,在现代控制理论和人工智能发展的理论基础上,针对工业过程本身的非线性、时变性、耦合性和不确定性等特性,提出了许多行之有效的解决方法,如推理控制、预测控制、自适应控制、模糊控制和神经网络控制等,常统称为先进过程控制。近十年来,以专家系统、模糊逻辑、神经网络和遗传算法为主要方法的基于知识的智能处理方法已经成为过程控制的一种重要技术。先进控制方法可以有效地解决那些采用常规仪表控制效果差,甚至无法控制的复杂工业工业过程的控制问题。实践证明,先进控制方法能取得更高的控制品质和更大的经济效益,具有广阔的发展前景。
当今国内外的温度控制技术都是基于反馈的概念。反馈理论的重要部分: 测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节系统的响应。这个理论和应用自动控制的关键是做出正确的测量和比较后,如何才能更好地纠正系统。PID控制器作为最早实用化的控制器已有50多年的历史,由于PID具有简单、直观、鲁棒性好的特点,成为工业过程控制最为常用的控制方式。