Yb掺杂YAG透明微晶玻璃的制备和发光性质研究毕业论文
2021-03-23 21:53:55
摘 要
激光在医疗、工业加工和科学研究等领域应用广泛。激光增益介质材料作为激光器中的关键组成部分,对激光器的结构和性能设计有着重要的影响。Yb3 离子和YAG晶体分别是具有代表性的激光激活离子和基质材料,它们的组合Yb: YAG晶体是适用于大功率微片激光器的激光材料。新型YAG透明微晶玻璃能够兼具YAG激光晶体的导热性好、激光损伤阈值高等性能特点,并结合玻璃易于制备的工艺特性,具有良好的应用潜力。但目前,相关的研究和报告极少。
本论文探索了通过先采用气悬浮技术制备Yb掺杂的钇铝酸盐玻璃,然后热处理的Yb掺杂YAG透明微晶玻璃制备方法。并通过对样品进行结构和发光性能测试,研究了母体玻璃组成、热处理温度和Yb3 掺杂浓度对YAG微晶玻璃中Yb3 离子的近红外发光性质的影响规律,获得的主要结果如下:
(1)通过对Yb3 离子掺杂钇铝酸盐玻璃的热处理,能够获得Yb掺杂YAG透明微晶玻璃;在本实验中,较优的母体玻璃组成为27Y2O3-73Al2O3(mol%);
(2)随着热处理温度的升高,微晶玻璃中Yb3 近红外发光峰半高宽逐渐减小,说明更多的Yb3 离子进入YAG微晶相,相应的荧光寿命呈先减小后增加的变化趋势;
(3)当母体玻璃中的Yb2O3掺杂浓度从1%增加至10%时,母体玻璃和微晶玻璃中Yb3 发光峰形状未见明显变化,但荧光寿命均呈逐渐降低的趋势。
关键词:气悬浮无容器技术;透明微晶玻璃;Yb3 离子;YAG;
ABSTRACT
Laser has wildly applied in the fields of medication, industrial processing and scientific research. The gain medium is one of the key components of laser device, which plays as an important role for the structure designing of laser and its lasing performance. Yb3 ion and YAG crystal are the most typical activator ion and host material, respectively. Yb: YAG laser crystal has been regarded as a perfect candidate for high power disk laser, which combines the characteristics of Yb3 and YAG. YAG transparent glass ceramics is also supposed to be potential for high power laser, which has been considered a novel gain medium material combining the advantages of YAG laser crystal such as high thermal conductivity and high damage threshold, and the benefit of glass preparation technique of easy processing. However, there are only few related studies have been reported till now.
In this study, a method for Yb: YAG transparent glass ceramics preparation was explored through a two-step process: preparing Yb-doped Y2O3-Al2O3 mother glass through aerodynamic levitation technique at first, and then heat treating the as-prepared glass sample. The structure and photoluminescence properties of obtained samples were characterized and the effect of mother glass composition, heat treatment temperature and Yb2O3 doping content on the near-infrared luminescence from Yb3 ions in YAG glass ceramics samples was also studied. The conclusion could summarized as follows,
- The method of heat treating Yb-doped Y2O3-Al2O3 mother glass for transparent glass ceramic is viable, and the suitablechemical composition of mother glass is suggested to be 27Y2O3-73Al2O3 in mol%.
- With the increasing of heat treatment temperature, the FWHM of Yb3 luminescence in glass ceramic sample decreased gradually, while the corresponding fluorescent lifetime decreased at first and then increased, which could be assigned to more Yb3 ions have been introduced into YAG nanocrystalline.
- With the increment of Yb2O3 doping content from 1% to 10%, no apparent sharp change was observed in the PL spectra, while the lifetime of Yb3 in either glass or glass ceramics samples was estimated to be decreasing gradually.
Keywords: aerodynamic levitation containless processingtechnique; transparentglass-ceramic; Yb3 ion; YAG
目录
摘 要 I
ABSTRACT II
第一章 绪论 1
1.1 固体激光器概述 1
1.1.1 固体激光器基本结构 1
1.2 增益介质的性能影响因素及选择 1
1.2.1 增益介质的一般要求 2
1.2.2 增益介质种类 2
1.2.3 YAG晶体 3
1.2.4 Nd3 : YAG和Yb3 : YAG光学性能 4
1.2.5 微晶玻璃、透明陶瓷、玻璃和晶体 5
1.3 微晶玻璃研究现状 6
1.4 研究目的意义及主要研究内容 7
第二章 样品的制备和表征 8
2.1 实验试剂及仪器 8
2.1.1 实验试剂 8
2.1.2 实验仪器 8
2.2 气动悬浮卢(AALF-1) 9
2.3 样品制备 10
2.3.1 微晶玻璃制备过程 10
2.4 样品性能的测试与表征 11
2.4.1 DSC差示扫描量热法 11
2.4.2 粉末XRD 12
2.4.3 显微形貌分析 12
2.4.4 光致发光光谱 13
2.4.5 荧光寿命 13
第三章 结果与讨论 15
3.1 组成对玻璃性质的影响 15
3.1.1 成玻区间 15
3.1.2 热处理 15
3.1.3 DSC 16
3.1.4 XRD 17
3.1.5 SEM 18
3.1.6 PL光谱 19
3.1.7小结 21
3.2 热处理温度对样品发光性质的影响 21
3.2.1 PL光谱 21
3.2.2 荧光寿命 23
3.2.3 小结 24
3.3 Yb掺杂浓度对样品发光性质的影响 24
3.3.1 PL光谱 24
3.3.2 荧光寿命 25
3.3.3小结 27
结 论 28
参考文献 29
致 谢 30
第一章 绪论
1.1 固体激光器概述
激光(LASER)是受激辐射光放大(Light Amplification by Stimulated Emission of Radiation)的缩写。与自然光相比,激光具有单色性和指向性好、集光性和高亮度性的优点,广泛地应用于辐照医疗、工业打标、激光加工和焊接等领域。按照增益介质的类型不同,我们一般将激光器分为固体激光器、染料激光器、气体激光器和半导体激光器。其中,由于固体激光器的体积较小,重量较轻,结构相对来说比较紧凑,便于携带维护与操作以及输出功率大等一些列优点,使其成为目前光电子领域中最具发展前景和应用市场的主动器件之一。
1.1.1 固体激光器基本结构
固体激光器一般由增益介质,泵浦源,谐振腔和电源组成。
⑴激光增益介质,也称为激光工作物质,它的作用是在激发光源的作用下实现粒子数的反转,即处于高能态的粒子数超过低能态的粒子数量,并且产生受激辐射放大。因此,增益介质的主要性能指标就是能否实现较大的粒子束的反转,而且使高能态的粒子尽可能长时间的保持在高能级。