反选择性氧化石墨烯膜的制备表征及醇水分离性能任务书
2020-06-10 22:02:25
1. 毕业设计(论文)的内容和要求
反选择性膜(大尺寸分子优先渗透,小尺寸分子被截留)由于在节能降耗等方面的显著优势近年来已成为膜领域的研究热点。
针对目前高分子膜材料用于反选择性分离所存在的问题,基于石墨烯的规整纳米通道有望实现高效的反选择性分离。
本次毕业论文的主要内容是拟基于石墨烯纳米通道及高分子-无机双层结构构筑高性能反选择性膜,测试其渗透汽化性能并进行相关结构表征 1、理解渗透汽化的基本概念、原理、实验流程图以及影响处理性能的主要因素; 2、了解渗透汽化膜的基本分类及其所应用的分离体系; 3、了解氧化石墨烯膜的制备和物化性质; 4、合理安排实验进程,工作时间不迟到早退; 5、实验认真仔细,对实验现象进行详细的记录,定期对实验数据进行总结,及时调整实验方案; 6、 工作积极主动,勤于思考,做好实验室安全卫生工作。
2. 参考文献
[1] D. L. Gin; R. D. Noble, Designing the next generation of chemical separation membranes, Science, 2011, 332, 674-676. [2] M. D. Guiver; Y. M. Lee, Polymer rigidity improves microporous membranes, Science, 2013, 339, 284-285. [3] Y. Peng; Y. S. Li; Y. J. Ban; H. Jin; W. M. Jiao; X. L. Liu; W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 2014, 346, 1356-1359. [4] T. C. Merkel; B. D. Freeman; R. J. Spontak; Z. He; I. Pinnau; P. Meakin; A. J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 2002, 296, 519-522. [5] E. Jeon; S. Y. Moon; J. S. Bae; J. W. Park, In situ generation of reticulate micropores through covalent network/polymer nanocomposite membranes for reverse-selective separation of carbon dioxide, Angewandte Chemie International Edition, 2016, 55, 1318-1323. [6] H. Rabiee; A. Ghadimi; T. Mohammadi, Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF 4 ] gel membranes for CO2 /light gases separation, Journal of Membrane Science, 2015, 476, 286-302. [7] X. L. Liu; Y. S. Li; G. Q. Zhu; Y. J. Ban; L. Y. Xu; W. S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bioalcohols, Angewandte Chemie International Edition, 2011, 50, 10636-10639. [8] H. W. Fan; Q. Shi; H. Yan; S. L. Ji; J. X. Dong; G. J. Zhang, Simultaneously spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation, Angewandte Chemie International Edition, 2014, 53, 1-6. [9] G. P. Liu; W. S. Hung; J. Shen; Q. Q. Li; Y. H. Huang; W. Q. Jin; K. R. Lee; J. Y. Lai, Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery, Journal of Materials Chemistry A, 2015, 3, 4510-4521. [10] F. Clippel; A. L. Khan; A. C. Odena; M. Dusselier; K. Vanherck; L. Peng; S. Oswald; L. Giebeler; S. Corthals; B. Kenens; J. F. M. Denayer; P. A. Jacobs; I. F. J. Vankelecom; B. F. Sels, CO2 reverse selective mixed matrix membranes for H2 purification by incorporation of carbon-silica fillers, Journal of Materials Chemistry A, 2013, 1, 945-953. [11] X. J. Zhuang; X. R. Chen; Y. Su; J. Q. Luo; W. F Cao; Y. H. Wan, Improved performance of PDMS/silicalite-1 pervaporation membranes via designing new silicalite-1 particles, Journal of Membrane Science, 2015, 493, 37-45. [12] M. Q. Fang; H. T. Zhang; J. X. Chen; T. Wang; J. Liu; X. Li; J. D. Li; X. Z. Cao, A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation, Journal of Membrane Science, 2016, 499, 290-300. [13] J. Li; S. L. Ji, G. J. Zhang; H. X. Guo, Surface-modification of poly(dimethylsiloxane) membrane with self-assembled monolayers for alcohol permselective pervaporation, Langmuir, 2013, 29, 8093-8102. [14] R. R. Nair; H. A. Wu; P. N. Jayaram; I. V. Grigorieva; A. K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, 2012, 335, 442-444. [15] R. K. Joshi; P. Carbone; F. C. Wang; V. G. Kravets; Y. Su; I. V. Grigorieva; H. A. Wu; A. K. Geim; R. R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 2014, 343, 752-754. [16] H. Li; Z. N. Song; X. J. Zhang; Y. Huang; S. G. Li; Y. T. Mao; H. J. Ploehn; Y. Bao; M. Yu, Ultrathin, molecular-sieving grapheme oxide membranes for selective hydrogen separation, Science, 2013, 342, 95-98. [17] B. X. Mi, Graphene oxide membranes for ionic and molecular sieving, Science, 2014, 343, 740-742. [18] G. W. He; X. Y. He; X. L. Wang; C. Y. Chang; J. Zhao; Z. Li; H. Wu; Z. Y. Jiang, Highly proton-conducting, methanol-blocking Nafion/grapheme oxide composite membrane enabled by surface-coating crosslinked sulfonated grapheme oxide, Chemical Communications, 2016, 52, 2173-2176.
3. 毕业设计(论文)进程安排
17.2.20~17.3.20 文献调研,开题报告 17.3.20~17.5.21 开展实验工作 17.5.21~17.5.28 中后期实验阶段及数据收集 17.5.28~17.6.10 数据整理,撰写论文
您可能感兴趣的文章
- 用于甲醇制烯烃反应的SAPO-34/ZSM-5复合催化剂的原位水热结晶合成外文翻译资料
- 硫化氢在活体的化学发光探针成像外文翻译资料
- 全色发射型ESIPT荧光团对某些酸及其共轭碱负离子识别的颜色变化外文翻译资料
- 一种用于成像神经元细胞和海马组织中NMDA受体附近内源性ONOO-的双光子荧光探针外文翻译资料
- 表面功能化的Ui0-66/pebax基超薄复合中控纤维气体分离膜外文翻译资料
- 金属有机框架中的可逆调节对本二酚/醌反应:固态固定化分子开关外文翻译资料
- 二维MXene薄片的尺寸相关物理和电化学性质外文翻译资料
- 将制甲烷的Co催化剂转化为产甲醇的In@Co催化剂外文翻译资料
- MXene分子筛膜用于高效气体分离外文翻译资料
- 模板导向合成具有排列通道和增强药物有效荷载的立方环糊精聚合物外文翻译资料